2012年7月29日星期日

[小红猪]哥伦比亚号的最后飞行(2)

译者:月光

校对:霍森布鲁斯

原文:Columbia's Last Flight by WILLIAM LANGEWIESCHE

前文:[小红猪]哥伦比亚号的最后飞行(1)

不到一小时以后,东部时间早上10点整。退役的海军四星上将哈尔格曼在弗吉尼亚州威廉斯堡市的一个律师事务所与他的兄弟会面了。六十岁的格曼又高又瘦,他一头银发,有着一张没有皱纹的脸和一对温和的眼睛。他身穿普通的服装,站的笔杆条直,却不显得死板,与他所拥有的的高阶军衔和的权力地位形成鲜明对比的是,他很平易近人、谦虚。作为一个并不出色的工程学学生在宾夕法尼亚州海军后备军官训练队毕业后(“班里前四分之五,”他喜欢这么说),他在越南战争中成为一名巡逻船船长,之后成为了经验丰富的船长,航空母舰战斗群的指挥官,海军副总司令,最终成为了北大西洋公约组织大西洋区域指挥官以及美国联合部队总司令。在2000年退役的时候,他很轻松地从美国军队中第六高的职位卸任了。

海军生涯一帆风顺的他现在也很享受普通公民的生活。他是很少见的一类人——诚实的外表下有着惊人的聪明才智,自己感到很满足,也很平静。他的家在诺福克,最近刚刚翻新过过;他爱自己的妻子、未成年的孩子、他的父母以及所有的兄弟姐妹。他有一辆老旧的蓝绿色大众敞篷车,是从另一位上将那里买的。他喜欢乘着一艘三十四英尺的小帆船在切萨皮克航行,虽然它的帆已经磨破了。他还想把它的小冰柜换成一个12瓦的小冰箱。他是一位爱国者,但并不情绪激烈。他认为自己是财政上的保守派,社交上的温和派。他描述自己的生活为习惯的结果。但它也有着明显的个人色彩。他不和任何与国防部做生意的公司打交道。他喜欢权力,但明白权力的局限性。他不在乎是不是有名或有钱。他代表着最优秀的一类美国人。

在威廉斯堡的律师事务所里,他的哥哥告诉他哥伦比亚号失事的消息。他开车来这家事务所的路上关闭了收音机,所以并未得知这个消息。他询问了几个问题,平静地得到了一些信息。像大多数美国人一样,他不关注太空计划,也不知道这个(太空)任务已经开展了。他花了一小时与律师讨论家庭琐事。结束的时候他看见手机上的未读信息,但因为信号很差,他当时没能打开它们;直到后来在州际公路上开车回家的时候他才最终打开了这些信息。令他惊讶的是,在众多普通信息中他找到了一封急件:要求他立刻打给一位他从未听说过的NASA副局长,弗莱德•格雷格里。就像一个好美国公民一样,格曼在高速上飞奔的时候就拨下了号码。这位前太空飞船指挥官格雷格里说,“你得到消息了吗?”

格曼说,“二手的。”

格雷格里将已知的一小部分信息告诉了格曼,并且向他解释了1986年挑战者号失事后建立的意外事件应对措施:让已有的跨部门调查委员会展开行动,查明真相。按照最初的设想,调查委员会包括按照工作性质选出的七名民间和军队官员。委员会的成员的名字现在已经确定:包括三名空军将领,约翰•巴里,肯尼斯•赫斯和杜安•德尔;一位海军上将,斯蒂芬•特科特;一位NASA研究项目主任,G.斯科特•哈巴德;还有两位高级民航官员,詹姆斯•哈洛克以及史蒂芬•华莱士。虽然只有两人比较了解NASA或者太空飞船,但是从不同角度来讲,他们中的每一个都对大型高风险活动的复杂性非常了解。他们中的大部分都性格强硬。为了保证效率,他们需要一个更加强硬的管理者。格雷格里说,是NASA局长肖恩•奥基夫希望格曼能出任调查委员会的主席领导工作。格曼并非对表扬完全免疫,但是他很警惕。他几年前与奥基夫有一面之缘,但并不了解后者。他想确认自己不是被卷入了一场NASA的表演中。

奥基夫在华盛顿的工作时常变换,他曾是前国会工作人员和财政预算专家——长期是副总统迪克•切尼的门生——最终因为自己的竞争力和在共和党中的人脉而在90年代初成为海军部长。在克林顿时期他被排除在核心圈子之外,但在当下政府中又变成了行政管理与预算局副局长,负责处理NASA财政超支以及缺乏成果的问题,特别是关于太空站计划。很难知道他被任命为危险的NASA主席时是什么反应。在华盛顿圈内人士中,NASA的名声已经降到了底点,甚至有些奥基夫以前在国会的同事开玩笑说切尼是想要处理掉自己人了。与前任们所不同的是,奥基夫不是太空计划的狂热拥护者,他的目的也不是重塑NASA的招牌并带领他们前进;他是一个强硬的、头脑冷静的金融家,他完全明白华盛顿的现实,他是被送去使NASA在有所作为前的预算和表现重回正轨的。NASA计划的拥护者认为他是圈外人,痛恨他的计划带来的压力,但是公平的说,他是一个NASA需要的专业的管理者。

哥伦比亚号失事的当口,奥基夫才在NASA工作了一年。当时,他在佛罗里达飞船返回点处与他的一位副局长,前飞船指挥官威廉•瑞迪站在一起。东部时间早上9点05分,在计划降落时间前十分钟的时候,瑞迪得到消息说与飞船的联系还没有重建;奥基夫注意到瑞迪的脸色变得惨白。9点10分的时候,瑞迪打开笔记本查看各项时间顺序。他说:“我们应该已经听到音爆了。发生了严重的问题。”(译者注:音爆,当飞机开始超越音速飞行时发出的像爆炸一样的声音。)

9点29分的时候,奥基夫已经启动了全部的应急措施。当消息传到白宫时,高级官员们开始与事故划清界限:布什总统可能会与宇航员家属们一起为逝者哀悼并鼓励家属们坚强,他会表示相信NASA找出原因的能力,但不会像罗纳德•里根在挑战者号事故时指派独立的总统调查委员会而使自己参与其中。换句话说,这个重任完全落在了奥基夫的肩上。白宫同意任命格曼为NASA调查委员会主席——但奥基夫可能不会再得到更多的信息了。很可能总统都不想直接看到呈递的最终调查报告而是希望它被悄悄地投到白宫邮箱里。总统面临着比太空计划更棘手的问题。

然而,那天早上在他的车里,格曼已经意识到即使白宫只给了一个冷淡的回应同意任命,在这个重要的位置(他)如果处理得当,也会深入这次事故的问题核心。格雷格里明确表示格曼会得到来自NASA的工程师的全面支持以及揭开事故谜团——在200000英尺的高空究竟发生了什么——所需的技术资源。此外,格曼对自己有充分的信心:在深入调查事故原因时,他有充分经验来理清NASA中复杂的人事关系并且给出可能导致改革的调查结果。

这可能是他过于自信了,甚至有点理想化,但他这么想并不盲目:他在两年前刚刚离开海军的时候曾经经历过大型的调查:当时他和一位退役将军威廉•克劳奇领导调查2000年时美国“科尔”号战舰被自杀式恐怖袭击导致17名海军士兵丧生的事件始末。他们的调查结果发现了军队指挥系统运行中的重大错误,他们的建议(大部分都分类陈述)在今天仍被采用。对科尔号的成功调查是格雷格里提名他的一个理由。格曼并没有拒绝,但他希望对现状非常清楚。他说:“我知道你面前有我的信息,难道它没说我不是飞行员吗?”

格雷格里说:“我们不需要飞行员,我们需要一位调查员。”

在回到诺福克的高速路上,格曼接受了工作。当他到家的时候,他告诉妻子自己又是一名联邦雇员了,可能春天不会再去那么多次帆船航行了。那天下午和晚上,传真和电话开始响个不停,他开始掌控调查进程了;他认为最初由NASA指定的调查委员会章程需要扩大和强化,它的名字也必须从国际空间站和航天飞机事故跨机构调查委员会(ISSSSMIIB)改为更符合实际的哥伦比亚事故调查会员会,或者CAIB,发音为一个音节的“Cabe”。

NASA起初并未反对他的任何建议。格雷格里建议格曼直接去位于路易桑那州什里夫波特收集飞机残骸的巴克斯代尔空军基地。正当格曼开始寻找合适航班的时候,消息来说一架NASA高层的“湾流”喷气式飞机会来接他,和其他几位成员一起直接飞去巴克斯代尔。事故一天之后的星期天下午,飞机降落在诺福克。美国联邦航空局事故调查总长斯蒂芬•华莱士已经在机上了。华莱士是第二代飞行员,运动员,他精神高度集中,在政府事务方面有着广泛经验,对权威持怀疑态度。

他后来告诉我,格曼上飞机的时候穿的是西装,自我介绍之后格曼解释到他们有可能被记者包围,如果是这样的话,他会处理这些事。这总让人觉得格曼的动机有问题(他的确很喜欢身处镁光灯下的感觉),但华莱士不久就发现格曼并不是喜欢作秀的人。

格曼坐在向路易桑那州飞去的飞机尾部的一张桌子前,卷起袖子,开始询问其他调查委员会成员的看法——不是关于哥伦比亚号上发生了什么,而是如何着手调查。这就是随后7个月紧张工作的开端。很明显,格曼的确会倾听他人的想法,并且能很快且有效地将它们融入自己的思考中。在航行结束的时候,甚至华莱士都(对他)印象深刻。

因为拥有军队调查方面的经验,格曼从某些方面来讲也很“天真”:军方调查经常由闭门讨论得出结果,利益冲突也不是什么问题。然而他发现,哥伦比亚号的调查与以往完全不同。对于CAIB的攻讦从第二天就开始了,直到周三他们从什里夫波特移往休斯顿准备开工的时候也没有停歇的迹象。特别是国会质疑格曼是(NASA的)傀儡,他们认为应该像挑战者号事故时一样由总统指派调查员。格曼很震惊,他原本认为只要做好自己的事就行了,现在发现如果不给这些疑问一个答复,他的最终报告就会是一张废纸。后来他对我说,“我本来没有想它,但我后来渐渐听到一种声音——‘你们不能让NASA的人调查他们自己!’——我明白自己必须和国会打交道了。”他首先开始接听电话。“他们告诉我如何建立信用。我没法创造它——他们告诉我。他们还说,‘我们讨厌NASA,我们不相信他们。他们的文化没有任何好处。他们从来不会核算成本。’然后我说,‘好吧。’”

此外,格曼意识到是国会议员——并非奥基夫或NASA——才是调查委员会的真正投票人,他们的顾虑是合情合理的。随着对调查的深度和复杂程度的深入了解,他强制进行了一系列改变,包括建立一个与国会联系的办公室,募集到一笔独立资金(最终大概为两千万美元),从奥基夫手中取得对报告的控制,重写了调查目标,将找到“事故根源和详情”列入其中,并且增加了五名声誉良好的非政府人士作为调查委员会成员:电动船舶公司前总裁罗杰•特图拉特,前宇航员萨利•莱德,诺贝尔奖得主物理学家道格拉斯•奥谢罗夫,空气动力学家、前空军部长希拉•威娜尔以及历史学家以及太空法规专家约翰•洛格斯登

自此,最强烈的反对声音慢慢偃旗息鼓了。但是格曼对于政治环境的判断并不完善。新的民间调查委员会成员被允许享有NASA提供的工资(按实际工作比例分配的年工资约为13万美元)——当时情势下一个奇怪的“失误”,这也使得哥伦比亚事故调查委员会依然被指责为NASA的傀儡。《奥兰多卫报》曾以引起歧义的短语“付钱给调查委员会确保保密”写过一篇关于公众缺乏(CAIB)采访信息的知情权的文章。这个想法引的那些知道此种质问目的的调查员们不觉发笑。然而不必要的中伤已经造成了。

另一件不必要的事是格曼将奥基夫称为“西恩”的习惯,这个交际场里的称呼习惯使得人们错误地认为他们二人是朋友。其实,即使客气的说,他们二人的关系也很紧张。格曼告诉我,他从未问过在事故发生的早晨他当选CAIB主席背后的故事——或许因为永远不可能知道真相,的确如此,虽然当时奥基夫很难有时间仔细思索自己的选择。乍看之下格曼是一个稳重且有根基的人物,他肩上的四颗星可以在这种场合让人安心;而且他也是参与调查“科尔”事件的人物之一。奥基夫后来告诉我他在当教授的时候看过“科尔”事件的调查报告,但他印象最深刻的是他的同事做的一个关于此事的案例分析:将关于科尔号的调查引为一个目标集中的调查,“正确地“没有超出原本的意图(译者注:指没有引起政治或其他方面的纷争而只单纯调查事件)。

事实确实如此,但是他对格曼性格的猜测却错了。格曼关于科尔事件的调查没有扩大(比如将事件原因归结在个人身上)的原因,简单地说,是因为海军和FBI的调查已经包括了那一部分。格曼和克劳奇反而不留情地将事件越挖越深。调查文件直截了当地质问现今美国信奉的教条,指出指挥层的自大,并且批评美国军方称此事为恐怖袭击的假设。说法很直白。例如,当陈述对于外交上应用“罪犯”一词来称呼恐怖分子一事的理解时,报告警告了这个词语滥用,或是在警告相似的将恐怖主义者称为懦夫的情况。当后来我告诉他自己对于他的自由言论惊奇时,格曼不否认人们最近被谴责为叛徒。但是自由言论明显是他的习惯:他一样直率地说出了他敬爱的海军的弊端,以及国会的、NASA正在暴露的越来越多的弊端。

当我把这个性格特点告诉其中一位新CAIB成员希拉•威娜尔的时候,她笑着说她在进入五角大楼之前就知道了,而且人们只是不理解美军最高层而已。这些官员才是国家的支柱,她说,但是他们非常确信美国所缔造的伟大,他们愿意在美国的每一块基石旁哭泣,因为他们相信失败和困难一定可以克服。基本所有这一代高级领导者都曾经历过越南战争失败后的深刻反思。

奥基夫也有自己对“支柱”的理解,可能很复杂,但他明显没有预料到格曼的反对。第二周结束的时候,当格曼开始与国会建立独立联系且开始突破NASA设定的(调查)边界时,很明显奥基夫正在失去对事件的控制。他表面上仍希望一个全面的问询,但是听说他私下里很生气。冲突在二月末变得明显了,在奥基夫反对的情况下格曼坚持全部报告最终要公之于众。CAIB扩充至120人了,很多都是可以协助核心成员的专业的事故调查员和技术专家。他们一周七天在南休斯顿的一处开阔废弃场地里工作,就在约翰逊航天中心旁边。一天,几名调查委员会成员来警告格曼调查委员会可能出事。

格曼知道他们在说什么。在(哥伦比亚号)失事后的几天,奥基夫设立了一个内部事故调查组,它的任务是与哥伦比亚事故调查委员会紧密合作,它的成员——神奇地——包括一些与哥伦比亚号最后一次航行有密切关系的决策者。这个调查组由航天飞机计划中一位头脑敏锐的管理者琳达•汉姆领导,她(在哥伦比亚号任务中)的行动可以被最终认作NASA惊人错误中的一个。格曼还不知情,但他感觉到汉姆所处的位置很可能泄露NASA的最终报告,他还记得她最近做的一个不容置疑的三小时的介绍,并且基本不允许(对此事)同步的研讨探究。

他意识到她和调查组中的其他人必须离开CAIB,他小心地向位于华盛顿的奥基夫写信,请求立刻将他们调离。这是NASA没有默许的约翰逊航天中心的一个自保行动。汉姆以及另一位管理员,拉尔夫洛欧,反应尤其激烈。在格曼的办公室里,轮流地发怒和哭泣,他们不愿离开,指责格曼破坏他们的团结并且质问他,他们如何向其他人解释(他们的离去)。格曼说出了国会强调过的一句话——人们不能调查自己。这就像被写入了市政纲领一样,一旦被宣布就是显而易见的规定。

奥基夫有公共管理专业的硕士文凭,但他不同意。这很奇怪,他在NASA待的时间不足以让他被NASA自保的性格同化,就像他后来向国会保证的,他愿意——不,热切希望——找到并惩罚任何他的对事故负有责任的NASA副手。然而,他打算为难格曼,并且宣布他的人(调查组成员)会留在原位。这是一个考虑并不周全的举措。格曼直接将信件公之于众,发布在CAIB网站上。格曼明白奥基夫感觉自己背叛了他——“在背后捅上一刀”是流传的说法——但是NASA让他别无选择。奥基夫妥协了。汉姆和其他人被调离了,调查组也解散了,由与哥伦比亚事故无关的、且可能会与CAIB友好合作的NASA成员取代。CAIB无法完全澄清自其建立之初就流传的(与NASA)串通的传闻,但是格曼已经取得了很大的胜利,虽然这意味着他与“西恩”不再是朋友了。

航天飞机航天飞机是有史以来最大胆的飞行器,是一个成为现实的工程神话。每次上天之前,核心部分高达184英尺的航天飞机航天飞机都笔直地竖立在肯尼迪航天中心发射架上。航天飞机航天飞机,也叫轨道飞行器,是一个有翼的运载工具,大概是DC-9那么大(译者注:DC-9,一种大型客机,1965年始造),它的尾部有三个主火箭引擎,中部有一个大型未增压的货物区,在鼻部区域有一块狭窄的机组人员的隔间。它与一个巨大的存放三个主引擎的液体燃料的外置燃料箱相连。燃料箱与两个燃烧固体燃料的、被称为推进器的火箭相连,这两个火箭处于整个机构的两边,它的全部重量都由发射台支撑。就在发射之前,其重量大约为四百五十万磅,90%都为燃料重量。这是一个神奇的时刻,时机已到;航天飞机像一个活物一样喷出蒸汽;地面工作人员纷纷跑开直到最终没人留在那儿;空气中弥漫着奇怪的安静。

航天飞机中有7名宇航员。其中四个在座舱中坐着,其余三人在低一层的、名为“中部甲板”的生活区里。因为航天飞机的垂直位置,他们的椅子被完全向后翻转了90度,所以他们是“坐”在后背上的,感觉自己被重力牢牢扯着。在座舱前部,比普通宇航员的六英尺位置更接近控制板的是指挥官和飞行员,他们可以直接向前看到太空。他们是经过严密训练的。他们完全知道自己面对的是什么。有时候他们为这一时刻的到来会等待几年。

发射窗大概只打开了几分钟。它受绕轨机制控制,由轨道和目的地,也就是未完成的国际空间站的位置定位。升空前三秒,三个主引擎点火并开足100%火力,制造了超过一百万磅的推力。航天飞机发出了“嘭”的一声,向外置燃料箱方向移动了几英尺又移动回来。座舱中已感觉到了。内部噪音不是很大。如果电脑显示主引擎工作正常,固体燃料火箭推进器将会点火。推进器是十分“凶猛的”仪器——与摧毁挑战者号同类型的怪物。每一个能产生三百万磅的推力。一旦点火,它们将不能熄灭或减速。航天飞机升空了。它从发射塔边穿过,速度达到100英里每小时,虽然因为它太大了看起来上升地很慢。

除非意外发生,飞行是完全自动的。几秒之内组合体旋转并确定方向,微微偏离竖直方向并转动以使得轨道飞行器处于外置燃料箱下方。虽然剧烈的振动使得仪器变得不精确,但加速度却只有2.5G——轻微出现被压在座位上的感觉。大约40秒之后航天飞机在17000码的高空加速到1760英里每小时,笔直地向上攀升。80秒之后,随着航天飞机在150000码的位置达到3400英里每小时,机组人员可以感觉到来自固体火箭推进器的推力减小了。随后,随着一片明亮的闪光和航天飞机内部都可听到的巨大爆炸声,火箭推进器与主燃料箱分离了;推进器继续沿着弹道轨道向上飞向220000码的高空,然后在降落伞的帮助下掉入海中。现在只在主引擎的推动下航程变得顺畅了,推力(产生的加速度)降至1G。

一个飞行员向我简单地解释了这种感觉。他说,“开始就像,‘嗨,这是个艰难的航行!’然后,‘嗨,我是一辆电车!’,紧接着,‘嗨,这辆车开得超级快!’”速度是发射步骤的最终指标。完全进入超薄大气后,航天飞机开始缓缓地仰转直到与地球平行、处于外置燃料箱之下以及全马力推动状态。升空6分钟之后,在356000码的空中,航天飞机正以9200英里每小时飞行着,这是很快,但只是能够保持在轨道上所需速度的一半。它开始了一个很短的俯冲,在这段过程中它的速度每20秒增加1000英里每小时——加速度即将到达航天飞机的设计极限3G,引擎不得不暂时减慢。达到10300英里每小时的时候,航天飞机转向头部向上的位置。超过15000英里每小时的时候,它重新开始以3G的加速度爬升,直到几秒钟之后即将到达真空的太空中时,航天飞机达到了环绕速度(译者注:第一宇宙速度),约为17500英里每小时。主引擎产生的烟向前环绕着,在座舱窗户前跳着舞,有如圣爱尔摩火焰一样创造着光亮。距离航天飞机升空才刚刚过去了8分30秒。主引擎熄灭了,外置燃料箱分离。航天飞机到达了地球轨道。通过进一步缓缓地调整,它到达了标准姿态,尾部向前,与地球自转方向相反地绕着地球飞行。

相关文章
<p>本文作者:小红猪小分队</p><p><div class="editornote"><p></p> <p>译者:月光</p> <p>校对:霍森布鲁斯</p> <p>原文:<a href="http://www.theatlantic.com/magazine/archive/2003/11/columbia-apos-s-last-flight/4204" target="_blank">Columbia's Last Flight</a> by <a href="http://www.theatlantic.com/william-langewiesche/">WILLIAM LANGEWIESCHE</a></p> <p></p></div></p> <p>前文:<a rel="bookmark" href="http://songshuhui.net/archives/57821">[小红猪]哥伦比亚号的最后飞行(1)</a></p> <p><img class="alignleft" title="1" src="http://songshuhui.net/wp-content/uploads/2011/08/1.jpg" alt="" width="251" height="337" />不到一小时以后,东部时间早上10点整。退役的海军四星上将哈尔格曼在弗吉尼亚州威廉斯堡市的一个律师事务所与他的兄弟会面了。六十岁的格曼又高又瘦,他一头银发,有着一张没有皱纹的脸和一对温和的眼睛。他身穿普通的服装,站的笔杆条直,却不显得死板,与他所拥有的的高阶军衔和的权力地位形成鲜明对比的是,他很平易近人、谦虚。作为一个并不出色的工程学学生在宾夕法尼亚州海军后备军官训练队毕业后(“班里前四分之五,”他喜欢这么说),他在越南战争中成为一名巡逻船船长,之后成为了经验丰富的船长,航空母舰战斗群的指挥官,海军副总司令,最终成为了北大西洋公约组织大西洋区域指挥官以及美国联合部队总司令。在2000年退役的时候,他很轻松地从美国军队中第六高的职位卸任了。</p> <p>海军生涯一帆风顺的他现在也很享受普通公民的生活。他是很少见的一类人——诚实的外表下有着惊人的聪明才智,自己感到很满足,也很平静。他的家在诺福克,最近刚刚翻新过过;他爱自己的妻子、未成年的孩子、他的父母以及所有的兄弟姐妹。他有一辆老旧的蓝绿色大众敞篷车,是从另一位上将那里买的。他喜欢乘着一艘三十四英尺的小帆船在切萨皮克航行,虽然它的帆已经磨破了。他还想把它的小冰柜换成一个12瓦的小冰箱。他是一位爱国者,但并不情绪激烈。他认为自己是财政上的保守派,社交上的温和派。他描述自己的生活为习惯的结果。但它也有着明显的个人色彩。他不和任何与国防部做生意的公司打交道。他喜欢权力,但明白权力的局限性。他不在乎是不是有名或有钱。他代表着最优秀的一类美国人。</p> <p>在威廉斯堡的律师事务所里,他的哥哥告诉他哥伦比亚号失事的消息。他开车来这家事务所的路上关闭了收音机,所以并未得知这个消息。他询问了几个问题,平静地得到了一些信息。像大多数美国人一样,他不关注太空计划,也不知道这个(太空)任务已经开展了。他花了一小时与律师讨论家庭琐事。结束的时候他看见手机上的未读信息,但因为信号很差,他当时没能打开它们;直到后来在州际公路上开车回家的时候他才最终打开了这些信息。令他惊讶的是,在众多普通信息中他找到了一封急件:要求他立刻打给一位他从未听说过的NASA副局长,弗莱德•格雷格里。就像一个好美国公民一样,格曼在高速上飞奔的时候就拨下了号码。这位前太空飞船指挥官格雷格里说,“你得到消息了吗?”</p> <p>格曼说,“二手的。”</p> <p>格雷格里将已知的一小部分信息告诉了格曼,并且向他解释了1986年挑战者号失事后建立的意外事件应对措施:让已有的跨部门调查委员会展开行动,查明真相。按照最初的设想,调查委员会包括按照工作性质选出的七名民间和军队官员。委员会的成员的名字现在已经确定:包括三名空军将领,约翰•巴里,肯尼斯•赫斯和杜安•德尔;一位海军上将,斯蒂芬•特科特;一位NASA研究项目主任,G.斯科特•哈巴德;还有两位高级民航官员,詹姆斯•哈洛克以及史蒂芬•华莱士。虽然只有两人比较了解NASA或者太空飞船,但是从不同角度来讲,他们中的每一个都对大型高风险活动的复杂性非常了解。他们中的大部分都性格强硬。为了保证效率,他们需要一个更加强硬的管理者。格雷格里说,是NASA局长肖恩•奥基夫希望格曼能出任调查委员会的主席领导工作。格曼并非对表扬完全免疫,但是他很警惕。他几年前与奥基夫有一面之缘,但并不了解后者。他想确认自己不是被卷入了一场NASA的表演中。</p> <p>奥基夫在华盛顿的工作时常变换,他曾是前国会工作人员和财政预算专家——长期是副总统迪克•切尼的门生——最终因为自己的竞争力和在共和党中的人脉而在90年代初成为海军部长。在克林顿时期他被排除在核心圈子之外,但在当下政府中又变成了行政管理与预算局副局长,负责处理NASA财政超支以及缺乏成果的问题,特别是关于太空站计划。很难知道他被任命为危险的NASA主席时是什么反应。在华盛顿圈内人士中,NASA的名声已经降到了底点,甚至有些奥基夫以前在国会的同事开玩笑说切尼是想要处理掉自己人了。与前任们所不同的是,奥基夫不是太空计划的狂热拥护者,他的目的也不是重塑NASA的招牌并带领他们前进;他是一个强硬的、头脑冷静的金融家,他完全明白华盛顿的现实,他是被送去使NASA在有所作为前的预算和表现重回正轨的。NASA计划的拥护者认为他是圈外人,痛恨他的计划带来的压力,但是公平的说,他是一个NASA需要的专业的管理者。</p> <p>哥伦比亚号失事的当口,奥基夫才在NASA工作了一年。当时,他在佛罗里达飞船返回点处与他的一位副局长,前飞船指挥官威廉•瑞迪站在一起。东部时间早上9点05分,在计划降落时间前十分钟的时候,瑞迪得到消息说与飞船的联系还没有重建;奥基夫注意到瑞迪的脸色变得惨白。9点10分的时候,瑞迪打开笔记本查看各项时间顺序。他说:“我们应该已经听到音爆了。发生了严重的问题。”(译者注:音爆,当飞机开始超越音速飞行时发出的像爆炸一样的声音。)</p> <p>9点29分的时候,奥基夫已经启动了全部的应急措施。当消息传到白宫时,高级官员们开始与事故划清界限:布什总统可能会与宇航员家属们一起为逝者哀悼并鼓励家属们坚强,他会表示相信NASA找出原因的能力,但不会像罗纳德•里根在挑战者号事故时指派独立的总统调查委员会而使自己参与其中。换句话说,这个重任完全落在了奥基夫的肩上。白宫同意任命格曼为NASA调查委员会主席——但奥基夫可能不会再得到更多的信息了。很可能总统都不想直接看到呈递的最终调查报告而是希望它被悄悄地投到白宫邮箱里。总统面临着比太空计划更棘手的问题。</p> <p>然而,那天早上在他的车里,格曼已经意识到即使白宫只给了一个冷淡的回应同意任命,在这个重要的位置(他)如果处理得当,也会深入这次事故的问题核心。格雷格里明确表示格曼会得到来自NASA的工程师的全面支持以及揭开事故谜团——在200000英尺的高空究竟发生了什么——所需的技术资源。此外,格曼对自己有充分的信心:在深入调查事故原因时,他有充分经验来理清NASA中复杂的人事关系并且给出可能导致改革的调查结果。</p> <p>这可能是他过于自信了,甚至有点理想化,但他这么想并不盲目:他在两年前刚刚离开海军的时候曾经经历过大型的调查:当时他和一位退役将军威廉•克劳奇领导调查2000年时美国“科尔”号战舰被自杀式恐怖袭击导致17名海军士兵丧生的事件始末。他们的调查结果发现了军队指挥系统运行中的重大错误,他们的建议(大部分都分类陈述)在今天仍被采用。对科尔号的成功调查是格雷格里提名他的一个理由。格曼并没有拒绝,但他希望对现状非常清楚。他说:“我知道你面前有我的信息,难道它没说我不是飞行员吗?”</p> <p>格雷格里说:“我们不需要飞行员,我们需要一位调查员。”</p> <p>在回到诺福克的高速路上,格曼接受了工作。当他到家的时候,他告诉妻子自己又是一名联邦雇员了,可能春天不会再去那么多次帆船航行了。那天下午和晚上,传真和电话开始响个不停,他开始掌控调查进程了;他认为最初由NASA指定的调查委员会章程需要扩大和强化,它的名字也必须从国际空间站和航天飞机事故跨机构调查委员会(ISSSSMIIB)改为更符合实际的哥伦比亚事故调查会员会,或者CAIB,发音为一个音节的“Cabe”。</p> <p>NASA起初并未反对他的任何建议。格雷格里建议格曼直接去位于路易桑那州什里夫波特收集飞机残骸的巴克斯代尔空军基地。正当格曼开始寻找合适航班的时候,消息来说一架NASA高层的“湾流”喷气式飞机会来接他,和其他几位成员一起直接飞去巴克斯代尔。事故一天之后的星期天下午,飞机降落在诺福克。美国联邦航空局事故调查总长斯蒂芬•华莱士已经在机上了。华莱士是第二代飞行员,运动员,他精神高度集中,在政府事务方面有着广泛经验,对权威持怀疑态度。</p> <p>他后来告诉我,格曼上飞机的时候穿的是西装,自我介绍之后格曼解释到他们有可能被记者包围,如果是这样的话,他会处理这些事。这总让人觉得格曼的动机有问题(他的确很喜欢身处镁光灯下的感觉),但华莱士不久就发现格曼并不是喜欢作秀的人。</p> <p>格曼坐在向路易桑那州飞去的飞机尾部的一张桌子前,卷起袖子,开始询问其他调查委员会成员的看法——不是关于哥伦比亚号上发生了什么,而是如何着手调查。这就是随后7个月紧张工作的开端。很明显,格曼的确会倾听他人的想法,并且能很快且有效地将它们融入自己的思考中。在航行结束的时候,甚至华莱士都(对他)印象深刻。</p> <p>因为拥有军队调查方面的经验,格曼从某些方面来讲也很“天真”:军方调查经常由闭门讨论得出结果,利益冲突也不是什么问题。然而他发现,哥伦比亚号的调查与以往完全不同。对于CAIB的攻讦从第二天就开始了,直到周三他们从什里夫波特移往休斯顿准备开工的时候也没有停歇的迹象。特别是国会质疑格曼是(NASA的)傀儡,他们认为应该像挑战者号事故时一样由总统指派调查员。格曼很震惊,他原本认为只要做好自己的事就行了,现在发现如果不给这些疑问一个答复,他的最终报告就会是一张废纸。后来他对我说,“我本来没有想它,但我后来渐渐听到一种声音——‘你们不能让NASA的人调查他们自己!’——我明白自己必须和国会打交道了。”他首先开始接听电话。“他们告诉我如何建立信用。我没法创造它——他们告诉我。他们还说,‘我们讨厌NASA,我们不相信他们。他们的文化没有任何好处。他们从来不会核算成本。’然后我说,‘好吧。’”</p> <p>此外,格曼意识到是国会议员——并非奥基夫或NASA——才是调查委员会的真正投票人,他们的顾虑是合情合理的。随着对调查的深度和复杂程度的深入了解,他强制进行了一系列改变,包括建立一个与国会联系的办公室,募集到一笔独立资金(最终大概为两千万美元),从奥基夫手中取得对报告的控制,重写了调查目标,将找到“事故根源和详情”列入其中,并且增加了五名声誉良好的非政府人士作为调查委员会成员:电动船舶公司前总裁罗杰•特图拉特,前宇航员萨利•莱德,诺贝尔奖得主物理学家道格拉斯•奥谢罗夫,空气动力学家、前空军部长希拉•威娜尔以及历史学家以及太空法规专家约翰•洛格斯登</p> <p>自此,最强烈的反对声音慢慢偃旗息鼓了。但是格曼对于政治环境的判断并不完善。新的民间调查委员会成员被允许享有NASA提供的工资(按实际工作比例分配的年工资约为13万美元)——当时情势下一个奇怪的“失误”,这也使得哥伦比亚事故调查委员会依然被指责为NASA的傀儡。《奥兰多卫报》曾以引起歧义的短语“付钱给调查委员会确保保密”写过一篇关于公众缺乏(CAIB)采访信息的知情权的文章。这个想法引的那些知道此种质问目的的调查员们不觉发笑。然而不必要的中伤已经造成了。</p> <p>另一件不必要的事是格曼将奥基夫称为“西恩”的习惯,这个交际场里的称呼习惯使得人们错误地认为他们二人是朋友。其实,即使客气的说,他们二人的关系也很紧张。格曼告诉我,他从未问过在事故发生的早晨他当选CAIB主席背后的故事——或许因为永远不可能知道真相,的确如此,虽然当时奥基夫很难有时间仔细思索自己的选择。乍看之下格曼是一个稳重且有根基的人物,他肩上的四颗星可以在这种场合让人安心;而且他也是参与调查“科尔”事件的人物之一。奥基夫后来告诉我他在当教授的时候看过“科尔”事件的调查报告,但他印象最深刻的是他的同事做的一个关于此事的案例分析:将关于科尔号的调查引为一个目标集中的调查,“正确地“没有超出原本的意图(译者注:指没有引起政治或其他方面的纷争而只单纯调查事件)。</p> <p>事实确实如此,但是他对格曼性格的猜测却错了。格曼关于科尔事件的调查没有扩大(比如将事件原因归结在个人身上)的原因,简单地说,是因为海军和FBI的调查已经包括了那一部分。格曼和克劳奇反而不留情地将事件越挖越深。调查文件直截了当地质问现今美国信奉的教条,指出指挥层的自大,并且批评美国军方称此事为恐怖袭击的假设。说法很直白。例如,当陈述对于外交上应用“罪犯”一词来称呼恐怖分子一事的理解时,报告警告了这个词语滥用,或是在警告相似的将恐怖主义者称为懦夫的情况。当后来我告诉他自己对于他的自由言论惊奇时,格曼不否认人们最近被谴责为叛徒。但是自由言论明显是他的习惯:他一样直率地说出了他敬爱的海军的弊端,以及国会的、NASA正在暴露的越来越多的弊端。</p> <p>当我把这个性格特点告诉其中一位新CAIB成员希拉•威娜尔的时候,她笑着说她在进入五角大楼之前就知道了,而且人们只是不理解美军最高层而已。这些官员才是国家的支柱,她说,但是他们非常确信美国所缔造的伟大,他们愿意在美国的每一块基石旁哭泣,因为他们相信失败和困难一定可以克服。基本所有这一代高级领导者都曾经历过越南战争失败后的深刻反思。</p> <p>奥基夫也有自己对“支柱”的理解,可能很复杂,但他明显没有预料到格曼的反对。第二周结束的时候,当格曼开始与国会建立独立联系且开始突破NASA设定的(调查)边界时,很明显奥基夫正在失去对事件的控制。他表面上仍希望一个全面的问询,但是听说他私下里很生气。冲突在二月末变得明显了,在奥基夫反对的情况下格曼坚持全部报告最终要公之于众。CAIB扩充至120人了,很多都是可以协助核心成员的专业的事故调查员和技术专家。他们一周七天在南休斯顿的一处开阔废弃场地里工作,就在约翰逊航天中心旁边。一天,几名调查委员会成员来警告格曼调查委员会可能出事。</p> <p>格曼知道他们在说什么。在(哥伦比亚号)失事后的几天,奥基夫设立了一个内部事故调查组,它的任务是与哥伦比亚事故调查委员会紧密合作,它的成员——神奇地——包括一些与哥伦比亚号最后一次航行有密切关系的决策者。这个调查组由航天飞机计划中一位头脑敏锐的管理者琳达•汉姆领导,她(在哥伦比亚号任务中)的行动可以被最终认作NASA惊人错误中的一个。格曼还不知情,但他感觉到汉姆所处的位置很可能泄露NASA的最终报告,他还记得她最近做的一个不容置疑的三小时的介绍,并且基本不允许(对此事)同步的研讨探究。</p> <p>他意识到她和调查组中的其他人必须离开CAIB,他小心地向位于华盛顿的奥基夫写信,请求立刻将他们调离。这是NASA没有默许的约翰逊航天中心的一个自保行动。汉姆以及另一位管理员,拉尔夫洛欧,反应尤其激烈。在格曼的办公室里,轮流地发怒和哭泣,他们不愿离开,指责格曼破坏他们的团结并且质问他,他们如何向其他人解释(他们的离去)。格曼说出了国会强调过的一句话——人们不能调查自己。这就像被写入了市政纲领一样,一旦被宣布就是显而易见的规定。</p> <p>奥基夫有公共管理专业的硕士文凭,但他不同意。这很奇怪,他在NASA待的时间不足以让他被NASA自保的性格同化,就像他后来向国会保证的,他愿意——不,热切希望——找到并惩罚任何他的对事故负有责任的NASA副手。然而,他打算为难格曼,并且宣布他的人(调查组成员)会留在原位。这是一个考虑并不周全的举措。格曼直接将信件公之于众,发布在CAIB网站上。格曼明白奥基夫感觉自己背叛了他——“在背后捅上一刀”是流传的说法——但是NASA让他别无选择。奥基夫妥协了。汉姆和其他人被调离了,调查组也解散了,由与哥伦比亚事故无关的、且可能会与CAIB友好合作的NASA成员取代。CAIB无法完全澄清自其建立之初就流传的(与NASA)串通的传闻,但是格曼已经取得了很大的胜利,虽然这意味着他与“西恩”不再是朋友了。</p> <p>航天飞机航天飞机是有史以来最大胆的飞行器,是一个成为现实的工程神话。每次上天之前,核心部分高达184英尺的航天飞机航天飞机都笔直地竖立在肯尼迪航天中心发射架上。航天飞机航天飞机,也叫轨道飞行器,是一个有翼的运载工具,大概是DC-9那么大(译者注:DC-9,一种大型客机,1965年始造),它的尾部有三个主火箭引擎,中部有一个大型未增压的货物区,在鼻部区域有一块狭窄的机组人员的隔间。它与一个巨大的存放三个主引擎的液体燃料的外置燃料箱相连。燃料箱与两个燃烧固体燃料的、被称为推进器的火箭相连,这两个火箭处于整个机构的两边,它的全部重量都由发射台支撑。就在发射之前,其重量大约为四百五十万磅,90%都为燃料重量。这是一个神奇的时刻,时机已到;航天飞机像一个活物一样喷出蒸汽;地面工作人员纷纷跑开直到最终没人留在那儿;空气中弥漫着奇怪的安静。</p> <p>航天飞机中有7名宇航员。其中四个在座舱中坐着,其余三人在低一层的、名为“中部甲板”的生活区里。因为航天飞机的垂直位置,他们的椅子被完全向后翻转了90度,所以他们是“坐”在后背上的,感觉自己被重力牢牢扯着。在座舱前部,比普通宇航员的六英尺位置更接近控制板的是指挥官和飞行员,他们可以直接向前看到太空。他们是经过严密训练的。他们完全知道自己面对的是什么。有时候他们为这一时刻的到来会等待几年。</p> <p>发射窗大概只打开了几分钟。它受绕轨机制控制,由轨道和目的地,也就是未完成的国际空间站的位置定位。升空前三秒,三个主引擎点火并开足100%火力,制造了超过一百万磅的推力。航天飞机发出了“嘭”的一声,向外置燃料箱方向移动了几英尺又移动回来。座舱中已感觉到了。内部噪音不是很大。如果电脑显示主引擎工作正常,固体燃料火箭推进器将会点火。推进器是十分“凶猛的”仪器——与摧毁挑战者号同类型的怪物。每一个能产生三百万磅的推力。一旦点火,它们将不能熄灭或减速。航天飞机升空了。它从发射塔边穿过,速度达到100英里每小时,虽然因为它太大了看起来上升地很慢。</p> <p>除非意外发生,飞行是完全自动的。几秒之内组合体旋转并确定方向,微微偏离竖直方向并转动以使得轨道飞行器处于外置燃料箱下方。虽然剧烈的振动使得仪器变得不精确,但加速度却只有2.5G——轻微出现被压在座位上的感觉。大约40秒之后航天飞机在17000码的高空加速到1760英里每小时,笔直地向上攀升。80秒之后,随着航天飞机在150000码的位置达到3400英里每小时,机组人员可以感觉到来自固体火箭推进器的推力减小了。随后,随着一片明亮的闪光和航天飞机内部都可听到的巨大爆炸声,火箭推进器与主燃料箱分离了;推进器继续沿着弹道轨道向上飞向220000码的高空,然后在降落伞的帮助下掉入海中。现在只在主引擎的推动下航程变得顺畅了,推力(产生的加速度)降至1G。</p> <p>一个飞行员向我简单地解释了这种感觉。他说,“开始就像,‘嗨,这是个艰难的航行!’然后,‘嗨,我是一辆电车!’,紧接着,‘嗨,这辆车开得超级快!’”速度是发射步骤的最终指标。完全进入超薄大气后,航天飞机开始缓缓地仰转直到与地球平行、处于外置燃料箱之下以及全马力推动状态。升空6分钟之后,在356000码的空中,航天飞机正以9200英里每小时飞行着,这是很快,但只是能够保持在轨道上所需速度的一半。它开始了一个很短的俯冲,在这段过程中它的速度每20秒增加1000英里每小时——加速度即将到达航天飞机的设计极限3G,引擎不得不暂时减慢。达到10300英里每小时的时候,航天飞机转向头部向上的位置。超过15000英里每小时的时候,它重新开始以3G的加速度爬升,直到几秒钟之后即将到达真空的太空中时,航天飞机达到了环绕速度(译者注:第一宇宙速度),约为17500英里每小时。主引擎产生的烟向前环绕着,在座舱窗户前跳着舞,有如圣爱尔摩火焰一样创造着光亮。距离航天飞机升空才刚刚过去了8分30秒。主引擎熄灭了,外置燃料箱分离。航天飞机到达了地球轨道。通过进一步缓缓地调整,它到达了标准姿态,尾部向前,与地球自转方向相反地绕着地球飞行。</p> <strong>相关文章</strong><div class="my-related-posts-box" style="width:100%;height:100%;clear:both;text-align:center;overflow:hidden;"> <a href="http://songshuhui.net/archives/58606" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]哥伦比亚号的最后飞行(4)</span></span> </a> <a href="http://songshuhui.net/archives/58564" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]哥伦比亚号的最后飞行(3)</span></span> </a> <a href="http://songshuhui.net/archives/57821" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/08/1-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]哥伦比亚号的最后飞行(1)</span></span> </a> <a href="http://songshuhui.net/archives/63935" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2012/01/20110120025533461-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]浩浩征途:往返火星的520天 </span></span> </a> <a href="http://songshuhui.net/archives/34794" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">未来星际旅行的十条途径</span></span> </a> </div> <div class="my-related-posts-clearboth" style="clear:both;height:1px;overflow:hidden;"></div>

最后的疯狂

饱受了一个夏天的蚊虫滋扰,原本指望秋风能像扫落叶一样,把万恶的蚊子赶尽杀绝。可惜事与愿违,就在这“天下无蚊”的“黎明之前”,却迎来了蚊子的疯狂反扑。

29℃左右是蚊子们最中意的温度。毫无疑问,夏天的蚊子最兴奋。但经验告诉我们,却是10月底的蚊子最恼人。这个季节夜晚气温较低,而暖洋洋的室内,就是最舒服的所在。在体温和二氧化碳的吸引下,雌蚊子们扯着母爱的大旗,肆无忌惮地把我们的呼噜撕成碎片,用嗡嗡的婚礼进行曲,给我们的美梦送葬。

没错,雌蚊的振翅频率较低,正是雄蚊心中的琴瑟之声。雌蚊必须从人血中吸收了充分的蛋白质,蚊子卵才能成熟,成为吸血这一崇高事业的接班人。

准妈妈们准备了吸血利器。利嘴尖端的一列锯齿,可以轻易地割开皮肤,而且刺激最小,力争做到神不知鬼不觉。公子哥们缺少这一圈锯齿,空有一张唬人利嘴,也只能在花丛中吸点植物汁液,嘴巴都能淡出鸟来。就像多数雄性动物一样,花枝招展的外貌,都是些吸引娘们的花招。不过,这些哥们充其量只是只贷不存的精子银行,供雌性储户们随时取用,被挤兑一空时,就只能呜呼哀哉了。可真是一帮吃斋的料。

雌蚊子倒也没有辜负银行的一片苦心,这一辈子只交配一次,把的精子都留在体内备用。一旦卵子在人血的滋润下瓜熟蒂落,就分出一小撮精子,用来受精。想来也是,当她们冲破纱窗蚊帐的层层设防,屏声静气等待除虫菊酯(杀虫喷雾的主要成分)的毒气散尽,捏着鼻子绕开涂了避蚊胺(驱蚊水的主要成分)的美味地带,好不容易从肥得流油的五花肉处啃得一口,谁敢担保软弱无能的精子银行就在附近开有提款机呢?所以,随身备一大钱包装满现钞是最保险的做法。

随着气温骤降,雌蚊也得为自己准备后路了。她们得趁着身子骨还能动弹,捞上最后一票,为漫长冬天储备能量。来年开春时,再从蛰伏中苏醒,制造新一批害人机器。

一旦寒冬来临,她们只能躲在尽可能温暖的处所,哆哆嗦嗦地过冬。她们从来不做寒号鸟,因为她们根本就没有垒窝的意识,砖缝、门背、衣橱就是过冬的好场所。可以想象,在这样的地方挨冬,会是多么辛苦的工作。而且死亡率极高,绝大多数的雌蚊都会葬身于此。

别太悲天悯人,这只是自然界的自然调节方法,没有这么一个淘汰率极高的冻死过程,来年的春天将会有超出承受力的巨大种群,对于整个蚊子家族来说并不是好事。要知道,理想情况下,每10天蚊子就能繁育约100只后代,一个夏天下来,一只雌蚊子就能摇身变出上亿只后代!

想到这一点,对于她们这最后一顿年夜饭,我已经深表同情。但仅仅只是同情而已,齐桓公却已经实实在在地行动起来。齐桓公对管仲说:“现在我们国家富强,人民富裕,再也不用担心有什么吃不饱穿不暖的可怜人了。我只是对有一件事非常忧心。现在蚊子到处飞舞,肯定是没有吃饱啊。老子真不安心哪。”于是打开翠纱帐篷,引蚊入帐。

得瑟到这个份上,齐桓公的脸皮之厚,就算谈不上后无来者,也绝对算得上旷古未有。

本文发表于11月6日?《信息时报》“生物圈”专栏

相关文章
<p>本文作者:liunianlong</p><p><a href="http://songshuhui.net/wp-content/uploads/2010/12/2008112585314184_2.jpg"><img class="alignleft size-full wp-image-46735" title="2008112585314184_2" src="http://songshuhui.net/wp-content/uploads/2010/12/2008112585314184_2.jpg" alt="" width="260" height="196" /></a> 饱受了一个夏天的蚊虫滋扰,原本指望秋风能像扫落叶一样,把万恶的蚊子赶尽杀绝。可惜事与愿违,就在这“天下无蚊”的“黎明之前”,却迎来了蚊子的疯狂反扑。</p> <p>29℃左右是蚊子们最中意的温度。毫无疑问,夏天的蚊子最兴奋。但经验告诉我们,却是10月底的蚊子最恼人。这个季节夜晚气温较低,而暖洋洋的室内,就是最舒服的所在。在体温和二氧化碳的吸引下,雌蚊子们扯着母爱的大旗,肆无忌惮地把我们的呼噜撕成碎片,用嗡嗡的婚礼进行曲,给我们的美梦送葬。</p> <p>没错,雌蚊的振翅频率较低,正是雄蚊心中的琴瑟之声。雌蚊必须从人血中吸收了充分的蛋白质,蚊子卵才能成熟,成为吸血这一崇高事业的接班人。</p> <p>准妈妈们准备了吸血利器。利嘴尖端的一列锯齿,可以轻易地割开皮肤,而且刺激最小,力争做到神不知鬼不觉。公子哥们缺少这一圈锯齿,空有一张唬人利嘴,也只能在花丛中吸点植物汁液,嘴巴都能淡出鸟来。就像多数雄性动物一样,花枝招展的外貌,都是些吸引娘们的花招。不过,这些哥们充其量只是只贷不存的精子银行,供雌性储户们随时取用,被挤兑一空时,就只能呜呼哀哉了。可真是一帮吃斋的料。</p> <p>雌蚊子倒也没有辜负银行的一片苦心,这一辈子只交配一次,把的精子都留在体内备用。一旦卵子在人血的滋润下瓜熟蒂落,就分出一小撮精子,用来受精。想来也是,当她们冲破纱窗蚊帐的层层设防,屏声静气等待除虫菊酯(杀虫喷雾的主要成分)的毒气散尽,捏着鼻子绕开涂了避蚊胺(驱蚊水的主要成分)的美味地带,好不容易从肥得流油的五花肉处啃得一口,谁敢担保软弱无能的精子银行就在附近开有提款机呢?所以,随身备一大钱包装满现钞是最保险的做法。</p> <p>随着气温骤降,雌蚊也得为自己准备后路了。她们得趁着身子骨还能动弹,捞上最后一票,为漫长冬天储备能量。来年开春时,再从蛰伏中苏醒,制造新一批害人机器。</p> <p>一旦寒冬来临,她们只能躲在尽可能温暖的处所,哆哆嗦嗦地过冬。她们从来不做寒号鸟,因为她们根本就没有垒窝的意识,砖缝、门背、衣橱就是过冬的好场所。可以想象,在这样的地方挨冬,会是多么辛苦的工作。而且死亡率极高,绝大多数的雌蚊都会葬身于此。</p> <p>别太悲天悯人,这只是自然界的自然调节方法,没有这么一个淘汰率极高的冻死过程,来年的春天将会有超出承受力的巨大种群,对于整个蚊子家族来说并不是好事。要知道,理想情况下,每10天蚊子就能繁育约100只后代,一个夏天下来,一只雌蚊子就能摇身变出上亿只后代!</p> <p>想到这一点,对于她们这最后一顿年夜饭,我已经深表同情。但仅仅只是同情而已,齐桓公却已经实实在在地行动起来。齐桓公对管仲说:“现在我们国家富强,人民富裕,再也不用担心有什么吃不饱穿不暖的可怜人了。我只是对有一件事非常忧心。现在蚊子到处飞舞,肯定是没有吃饱啊。老子真不安心哪。”于是打开翠纱帐篷,引蚊入帐。</p> <p>得瑟到这个份上,齐桓公的脸皮之厚,就算谈不上后无来者,也绝对算得上旷古未有。</p> <p>本文发表于11月6日?《信息时报》“生物圈”专栏</p> <strong>相关文章</strong><div class="my-related-posts-box" style="width:100%;height:100%;clear:both;text-align:center;overflow:hidden;"> <a href="http://songshuhui.net/archives/58081" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/08/蚊子_副本-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">无法无天的蚊子</span></span> </a> <a href="http://songshuhui.net/archives/47902" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/01/mosq3th.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">年度技术——灭蚊激光炮</span></span> </a> <a href="http://songshuhui.net/archives/41960" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2010/08/U19P9T1D21688F6DT20090612085807-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">人蚊大作战</span></span> </a> <a href="http://songshuhui.net/archives/70157" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2012/07/7yq5vy-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">猎龙方寸间</span></span> </a> <a href="http://songshuhui.net/archives/68347" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">生物饭店(五)大象要吃石块</span></span> </a> </div> <div class="my-related-posts-clearboth" style="clear:both;height:1px;overflow:hidden;"></div>

2012年7月28日星期六

谁是华生?

本文的主角不是他!

撰文 Olivier Lascar   编译 黄冠乔

“简单!他是歇洛克•福尔摩斯的得力助手!”——嘿嘿,大错特错!这位华生可不做任何调查,他搜集了海量的信息,目标是在电视问答游戏中赚到几百万。

这个游戏,就是“杰帕迪”(Jeopardy),全美最有名的电视猜谜节目。从1964年开播以来,平均每天有900万观众在电视机前等候着这一刻。无数竞争者从节目的红毯上走过,我们的华生并不是第一个,但他尚未登场,就已经引起轰动。因为华生并非寻常老百姓,他是一台机器!更准确地说,华生是一台具有最新编程、能回答任何问题(科学、政治、文学……)的电脑的昵称。

万宝全书也磕巴!

由IBM工程师精心打造的这个宝贝玩意儿,据说能够答出任何复杂的难题。诙谐、讽刺、弦外之音,怎么玩弄语言都吓不倒这位超级冠军,因为他完全破译了人类的思维模式。来试试这个问题:“谁是穿着豹皮裤衩的丛林之王?”这个问题有点绕圈子,但您一定能马上答出“人猿泰山”。华生也一样!而“杰帕迪”节目里的那些问题就全是这种风格的,为此,IBM的研究人员才想让华生上节目来对其进行测试。节目的播出日期尚不确定,但训练已经开始。几个陪练的幸运儿对华生的快速反应倍感震惊,它经常抢在人类对手前面给出正确答案。值得注意的是,它也会出错。《纽约时报》的一位记者如此描述在演练中出现的神秘故障。面对一系列问题,硅基大脑坚持回答“汤米•李•琼斯”,而正确答案明显和出演电影《黑衣人》的那位大明星没有任何关联!总之,还说不上十全十美。不过IBM的这台新电脑,似乎攀上了人工智能领域的新高峰。

人工智能这一学科诞生于美国汉诺威的达特茅斯学院。“1956年夏,这里召开了一个会议,聚集了来自各个研究领域的学者。”巴黎第六大学教师、AI专家让-加布里埃尔•迦那西亚(Jean-Gabriel Ganascia)讲述道,“当然有一些数学家,但不只是他们,有好几位哲学家也参加了。”到底是什么把这些人吸引到一起来座谈呢?“是信息技术的诞生。”让-加布里埃尔•迦那西亚如此回答。“在此之前几年,诞生了第一代电脑,将智力分解为基本元素并通过机器进行重新建构似乎有了可能。”那么50年后,华生的诞生是否标志着AI始创者的梦想得以实现呢?面对如此想法,法国国家科研中心奥赛机械及工程科学信息实验室的布里吉特•格罗(Brigitte Grau)嗤之以鼻。对她而言,华生的主要长处是其推土机般强大的处理能力:“它的力量主要来自其对语言的分析程序,虽然只是很简略的分析;其次是执行该程序的超级计算机快速的运算能力;最后是该计算机极其巨大的存储器。”她提到的这个超级计算机名为“蓝色基因”。对于信息专家而言,这个名字本身就是一个传奇。

国际象棋冠军的后代

本文的主角是他!

“蓝色基因”是“深蓝”的升级产品。由IBM开发的“深蓝”,早在1997年便取得了辉煌的战绩,数次击败国际象棋世界冠军加里•卡斯帕罗夫(Gary Kasparov)。根据当前的棋局,它能在1秒钟内计算出2亿种变化的可能,由此引来卡斯帕罗夫奇特的感叹。在输掉比赛后,这位前世界冠军宣称自己从对手那里感受到一种“智能形式”。那么华生呢,他聪明吗?他有一套的确是真的。因为除了快速的计算能力,这台超级电脑还拥有令人难以置信的巨大存储空间,能够记录上亿页的数字化文本。这样说的话,还真是非常可观。不过让-加布里埃尔•迦那西亚认为这算不上十分出奇:“我们知道,一张CD能存储1000本书,一张DVD能存储25000本。根据我的计算,法国国家图书馆(BNF)1300万卷藏书能收纳在一块12厘米见方的硬盘里!”那么华生呢,它能存储多少个BNF?决意保守机密的IBM三缄其口,“现在我们不便透露华生的系统配置。”参与项目研发的艾里克•布朗(Eric Brown)闪烁其辞。然而,不管怎样,如果华生不能及时从中找出准确的那一条,那么如此连山排海的信息也将毫无用处。在这一点上,起决定性作用的正是“蓝色基因”创纪录的运算速度。几秒钟内,它能扫描完一长列硬盘,每个硬盘都大如衣柜!“这些硬盘以并联方式相接,”布里吉特•格罗描述道,“因此,多种搜索算法能够对它们同时进行检索,从而比串联线路更节约时间,后者只能对每个存储器依次扫描。”终于点到了问题的核心:华生如何才能在所有的存储器中迅速找到有效信息并用以回答提出的问题呢?这要求事先从词汇和语法角度完成对句子的分析。“比如一个简单的问题:‘埃菲尔铁塔有多高?’提交给计算机后,这个问题就立即由语言自动处理算法进行分析,识别句子中的词语及其语法功能。”布里吉特•格罗解释道。如此计算机才能明白句子的主语是“埃菲尔铁塔”,它必须找到一条与其相匹配的信息,而这一信息就是铁塔的高度,这是一个数字。

然后,计算机在存储器中存储的所有文本中寻找答案。“文本的数量越多,检索到以‘埃菲尔铁搭的高度是’开头、包含匹配数值的句子的概率就越大。”布里吉特•格罗强调,“否则,计算机就必须找到以另一种形式存在的答案,并理解语言所提供的多种变化(比如近义词)。如果它最终找到多条性质一致、数值相同的信息,它就会明白这十有八九就是正确答案了。”在“杰帕迪”节目中,回答前最好仔细检查自己的答案,因为答错的话会扣分。如果一位参赛者没有答对一道200分的题,他不但什么都得不到,还要倒扣200分!

可见,华生之所以不同凡响,与其说是智能超常的缘故,倒不如说是因为它计算能力惊人。它知道人猿泰山是“穿着豹皮裤衩的丛林之王”,那是因为在它肚子里储存的诸多文本中,这位虚构的英雄就有这样的外号。这可算不上什么聪明……

“在语言识别中,这只是很肤浅的层面。”让-加布里埃尔•迦那西亚评论道,“看看这句话:‘保罗教授教授物理学。’两个‘教授’一个是名词,一个是动词,只有通过上下文背景才能明白。电脑在处理这样的问题时实在是力不从心。”就连华生对此也是无能为力,更不用说世界上其他电脑了。“我敢说,要实现这个突破还早得很。”布里吉特•格罗断言,“电脑能尽量逼近正确的理解方向,但语言的学习属于一种非常神秘的思维活动,我们没法(在机器上)穷尽这种复杂性。对我而言,这样反倒更好:说到底,对语言的掌握难道不正是人类的特征吗?”这位专家微笑着得出结论。这绝不是一件容易的事,是不是,华生?

---------------补充阅读的分割线-----------------------------------------------

图灵测试

机器到底能不能思考?华生的出现使这个问题又受到现实关注,但此问题最早是由英国数学家阿兰•图灵(Alan Turing)在60年前提出来的。这位信息技术的先驱在1950年设计了一种能解答这个问题的测试。图灵的设想是,让一人与两个看不见也听不到的对象通过书写的方式交流,一个对象是人类,另一个是机器。如果他不能说出两者实质的区别,我们就可认为此机器能“思考”。“图灵当时预言,50年后用一台机器和人进行5分钟的图灵测试,其成功骗过人类的概率为70%。”让-加布里埃尔•迦那西亚回顾道。预言准确吗?嗯……看起来图灵过于乐观了。因为,毫无疑问,信息技术专家能给自动装置编程,使之能与人类进行讨论(我们把这些能“聊天”的机器人称作“聊天机”,“罗伯纳”奖每年都颁发给它们中最出色的作品)。但这些程序经常使用一些“套语”来维持交谈,它们的回答没法长时间地维系“交谈”的感觉,类似“我对华生的看法?和您一样”这样的死板句式反复出现,很快就变得过于程式化,。那么华生在图灵测试中表现到底如何?我们相信它也不会及格。当然,这个系统完全不是为了“聊天”而开发的。依靠词语识别系统,它能回答问题,但无法进行交谈。要不开发一个华生2.0版试试?

看了这篇文章,是不是觉得对Watson倍感亲切起来了呢,来玩一把测试吧:寻找Watson

相关文章
<p>本文作者:新发现</p><div id="attachment_50279" class="wp-caption alignleft" style="width: 296px"><img class="size-full wp-image-50279 " title="2" src="http://songshuhui.net/wp-content/uploads/2011/02/2.jpg" alt="" width="286" height="373" /><p class="wp-caption-text">本文的主角不是他!</p></div> <p>撰文 Olivier Lascar   编译 黄冠乔</p> <p>“简单!他是歇洛克•福尔摩斯的得力助手!”——嘿嘿,大错特错!这位华生可不做任何调查,他搜集了海量的信息,目标是在电视问答游戏中赚到几百万。</p> <p>这个游戏,就是“杰帕迪”(Jeopardy),全美最有名的电视猜谜节目。从1964年开播以来,平均每天有900万观众在电视机前等候着这一刻。无数竞争者从节目的红毯上走过,我们的华生并不是第一个,但他尚未登场,就已经引起轰动。因为华生并非寻常老百姓,他是一台机器!更准确地说,华生是一台具有最新编程、能回答任何问题(科学、政治、文学……)的电脑的昵称。</p> <p><strong>万宝全书也磕巴!</strong></p> <p>由IBM工程师精心打造的这个宝贝玩意儿,据说能够答出任何复杂的难题。诙谐、讽刺、弦外之音,怎么玩弄语言都吓不倒这位超级冠军,因为他完全破译了人类的思维模式。来试试这个问题:“谁是穿着豹皮裤衩的丛林之王?”这个问题有点绕圈子,但您一定能马上答出“人猿泰山”。华生也一样!而“杰帕迪”节目里的那些问题就全是这种风格的,为此,IBM的研究人员才想让华生上节目来对其进行测试。节目的播出日期尚不确定,但训练已经开始。几个陪练的幸运儿对华生的快速反应倍感震惊,它经常抢在人类对手前面给出正确答案。值得注意的是,它也会出错。《纽约时报》的一位记者如此描述在演练中出现的神秘故障。面对一系列问题,硅基大脑坚持回答“汤米•李•琼斯”,而正确答案明显和出演电影《黑衣人》的那位大明星没有任何关联!总之,还说不上十全十美。不过IBM的这台新电脑,似乎攀上了人工智能领域的新高峰。</p> <p>人工智能这一学科诞生于美国汉诺威的达特茅斯学院。“1956年夏,这里召开了一个会议,聚集了来自各个研究领域的学者。”巴黎第六大学教师、AI专家让-加布里埃尔•迦那西亚(Jean-Gabriel Ganascia)讲述道,“当然有一些数学家,但不只是他们,有好几位哲学家也参加了。”到底是什么把这些人吸引到一起来座谈呢?“是信息技术的诞生。”让-加布里埃尔•迦那西亚如此回答。“在此之前几年,诞生了第一代电脑,将智力分解为基本元素并通过机器进行重新建构似乎有了可能。”那么50年后,华生的诞生是否标志着AI始创者的梦想得以实现呢?面对如此想法,法国国家科研中心奥赛机械及工程科学信息实验室的布里吉特•格罗(Brigitte Grau)嗤之以鼻。对她而言,华生的主要长处是其推土机般强大的处理能力:“它的力量主要来自其对语言的分析程序,虽然只是很简略的分析;其次是执行该程序的超级计算机快速的运算能力;最后是该计算机极其巨大的存储器。”她提到的这个超级计算机名为“蓝色基因”。对于信息专家而言,这个名字本身就是一个传奇。</p> <p><strong>国际象棋冠军的后代</strong></p> <div id="attachment_50280" class="wp-caption aligncenter" style="width: 610px"><img class="size-full wp-image-50280" title="xn13dd" src="http://songshuhui.net/wp-content/uploads/2011/02/xn13dd.jpg" alt="" width="600" height="400" /><p class="wp-caption-text">本文的主角是他!</p></div> <p>“蓝色基因”是“深蓝”的升级产品。由IBM开发的“深蓝”,早在1997年便取得了辉煌的战绩,数次击败国际象棋世界冠军加里•卡斯帕罗夫(Gary Kasparov)。根据当前的棋局,它能在1秒钟内计算出2亿种变化的可能,由此引来卡斯帕罗夫奇特的感叹。在输掉比赛后,这位前世界冠军宣称自己从对手那里感受到一种“智能形式”。那么华生呢,他聪明吗?他有一套的确是真的。因为除了快速的计算能力,这台超级电脑还拥有令人难以置信的巨大存储空间,能够记录上亿页的数字化文本。这样说的话,还真是非常可观。不过让-加布里埃尔•迦那西亚认为这算不上十分出奇:“我们知道,一张CD能存储1000本书,一张DVD能存储25000本。根据我的计算,法国国家图书馆(BNF)1300万卷藏书能收纳在一块12厘米见方的硬盘里!”那么华生呢,它能存储多少个BNF?决意保守机密的IBM三缄其口,“现在我们不便透露华生的系统配置。”参与项目研发的艾里克•布朗(Eric Brown)闪烁其辞。然而,不管怎样,如果华生不能及时从中找出准确的那一条,那么如此连山排海的信息也将毫无用处。在这一点上,起决定性作用的正是“蓝色基因”创纪录的运算速度。几秒钟内,它能扫描完一长列硬盘,每个硬盘都大如衣柜!“这些硬盘以并联方式相接,”布里吉特•格罗描述道,“因此,多种搜索算法能够对它们同时进行检索,从而比串联线路更节约时间,后者只能对每个存储器依次扫描。”终于点到了问题的核心:华生如何才能在所有的存储器中迅速找到有效信息并用以回答提出的问题呢?这要求事先从词汇和语法角度完成对句子的分析。“比如一个简单的问题:‘埃菲尔铁塔有多高?’提交给计算机后,这个问题就立即由语言自动处理算法进行分析,识别句子中的词语及其语法功能。”布里吉特•格罗解释道。如此计算机才能明白句子的主语是“埃菲尔铁塔”,它必须找到一条与其相匹配的信息,而这一信息就是铁塔的高度,这是一个数字。</p> <p>然后,计算机在存储器中存储的所有文本中寻找答案。“文本的数量越多,检索到以‘埃菲尔铁搭的高度是’开头、包含匹配数值的句子的概率就越大。”布里吉特•格罗强调,“否则,计算机就必须找到以另一种形式存在的答案,并理解语言所提供的多种变化(比如近义词)。如果它最终找到多条性质一致、数值相同的信息,它就会明白这十有八九就是正确答案了。”在“杰帕迪”节目中,回答前最好仔细检查自己的答案,因为答错的话会扣分。如果一位参赛者没有答对一道200分的题,他不但什么都得不到,还要倒扣200分!</p> <p>可见,华生之所以不同凡响,与其说是智能超常的缘故,倒不如说是因为它计算能力惊人。它知道人猿泰山是“穿着豹皮裤衩的丛林之王”,那是因为在它肚子里储存的诸多文本中,这位虚构的英雄就有这样的外号。这可算不上什么聪明……</p> <p>“在语言识别中,这只是很肤浅的层面。”让-加布里埃尔•迦那西亚评论道,“看看这句话:‘保罗教授教授物理学。’两个‘教授’一个是名词,一个是动词,只有通过上下文背景才能明白。电脑在处理这样的问题时实在是力不从心。”就连华生对此也是无能为力,更不用说世界上其他电脑了。“我敢说,要实现这个突破还早得很。”布里吉特•格罗断言,“电脑能尽量逼近正确的理解方向,但语言的学习属于一种非常神秘的思维活动,我们没法(在机器上)穷尽这种复杂性。对我而言,这样反倒更好:说到底,对语言的掌握难道不正是人类的特征吗?”这位专家微笑着得出结论。这绝不是一件容易的事,是不是,华生?<img class="alignright size-medium wp-image-50281" title="hr63aj" src="http://songshuhui.net/wp-content/uploads/2011/02/hr63aj-300x187.jpg" alt="" width="300" height="187" /></p> <p>---------------补充阅读的分割线-----------------------------------------------</p> <p><strong>图灵测试</strong></p> <p>机器到底能不能思考?华生的出现使这个问题又受到现实关注,但此问题最早是由英国数学家阿兰•图灵(Alan Turing)在60年前提出来的。这位信息技术的先驱在1950年设计了一种能解答这个问题的测试。图灵的设想是,让一人与两个看不见也听不到的对象通过书写的方式交流,一个对象是人类,另一个是机器。如果他不能说出两者实质的区别,我们就可认为此机器能“思考”。“图灵当时预言,50年后用一台机器和人进行5分钟的图灵测试,其成功骗过人类的概率为70%。”让-加布里埃尔•迦那西亚回顾道。预言准确吗?嗯……看起来图灵过于乐观了。因为,毫无疑问,信息技术专家能给自动装置编程,使之能与人类进行讨论(我们把这些能“聊天”的机器人称作“聊天机”,“罗伯纳”奖每年都颁发给它们中最出色的作品)。但这些程序经常使用一些“套语”来维持交谈,它们的回答没法长时间地维系“交谈”的感觉,类似“我对华生的看法?和您一样”这样的死板句式反复出现,很快就变得过于程式化,。那么华生在图灵测试中表现到底如何?我们相信它也不会及格。当然,这个系统完全不是为了“聊天”而开发的。依靠词语识别系统,它能回答问题,但无法进行交谈。要不开发一个华生2.0版试试?</p> <p><strong>看了这篇文章,是不是觉得对Watson倍感亲切起来了呢,来玩一把测试吧:<a href="http://www.guokr.com/watson/start/#start">寻找Watson</a></strong></p> <strong>相关文章</strong><div class="my-related-posts-box" style="width:100%;height:100%;clear:both;text-align:center;overflow:hidden;"> <a href="http://songshuhui.net/archives/56314" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/06/0624_artificial-intelligence_390x220-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]算法:人工智能的新曙光</span></span> </a> <a href="http://songshuhui.net/archives/32112" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2010/01/20091224_bb305bf429a39408dbc7atQQeJNduxaZ-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]电子游戏有人工智能吗?</span></span> </a> <a href="http://songshuhui.net/archives/12587" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2009/04/clip-image0022-144x144.gif" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]机器极客的兴起</span></span> </a> <a href="http://songshuhui.net/archives/12588" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]机器极客的崛起</span></span> </a> <a href="http://songshuhui.net/archives/55796" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/06/0111221160528-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">[小红猪]全纪录:数字化日记能展示你真实的一面</span></span> </a> </div> <div class="my-related-posts-clearboth" style="clear:both;height:1px;overflow:hidden;"></div>

2012年7月26日星期四

“食用胶”是什么东西


关于兰州拉面用“食用胶”使面条筋道的报道,再一次拨动了公众对于“食品添加剂”敏感的神经。“吃一碗面等于吃掉一只塑料袋”的恐吓,成功地煽起了公众的恐慌——这再次凸显,我们的记者,急需加强基本的科学素养。

报道中所谓的“食用胶”,是一大类食品原料。在食品技术上,称为“hydrocolloid”,一般翻译成“水胶体”。因为对它们不熟悉,所以公众往往想当然地认为是“化学工业产物”而本能地排斥。常用的水胶体,其实都是“天然产物”。比如琼脂和卡拉胶,是海藻的提取物。明胶,是从动物的皮或者骨头水解熬制而来。被许多人当作“神奇保健品”的阿胶,只不过是在选材和工艺上有所不同,跟明胶并没有本质差异。食用胶中比较“高级”的果胶,主要来源是桔子皮和苹果榨汁后的残渣。还有一些食用胶是来自于植物的种子,比如阿拉伯胶、瓜尔豆胶、槐豆胶,都是从相应植物的种子中提取而来的。还有一些水胶体由微生物发酵得到,比如黄原胶。微生物发酵可以用于产生各种各样的东西,能被人类挑选出来制造食物成分的,都是经过了精挑细选、重重考验的。有许多我们熟悉的食物来自于微生物发酵,比如酱油、酒、醋、味精等等。多数的水胶体是直接的提取物,只有很少数经过一定的加工,比如羧甲基纤维素(CMC)。它是从植物中提取的,又通过化学反应在分子中的某些位置加上了“羧甲基”。虽然它也可以称为“化学产品”,不过其安全性已经经过了广泛检验,并没有发现对健康有什么危害。

常见的食用胶多数是碳水化合物,从分子结构上来看,它们跟淀粉很类似。都是由小分子的糖(称为“单糖”)互相连接而成的高分子聚合物,叫做“多糖”或者 “多聚糖”。也有一些食用胶是蛋白质,常见的就是明胶。淀粉是最常见的多糖,是由葡萄糖连接而成的。而组成其他多糖的除了葡萄糖,还有果糖、半乳糖等等。不同的单糖和不同的连接方式,造就了各种各样性格不同的多糖。有一些只需要很少一点,就可以大大增加水的粘度,比如黄原胶。还有的食用胶在常温下不溶于水,在高温下溶解之后,降低地温就变成了固体,也就是通常所说的“成胶”了。明胶就是典型的例子。在不同的酸碱条件下,它们还可能和食物中的其他成分比如蛋白质、淀粉等发生连接,从而改善其他食物成分的特性,从而产生更加丰富多样的食品。比如许多蛋白质在酸性条件下不溶解,而很多人又喜欢酸性饮料的口味。加入适当的果胶,让果胶和蛋白质连接,就可能使蛋白质在酸性条件下溶解,从而获得清澈透明的酸性饮料。在面条中加入适当的食用胶,也可能使得面条更加筋道,也是一种改善。一般而言,食用胶在食物中的使用量不大,起到的作用主要有增稠、增加稳定性、成胶等。还有一些食用胶,本身也被当作膳食纤维。比如果胶、瓜尔胶、琼脂等。膳食纤维能够提供饱足感但是不产生热量,对于减肥有帮助。不溶性的膳食纤维有助通便,而可溶性的膳食纤维(比如果胶)到达大肠之后能被那里的细菌分解,产生一些有助健康的小分子物质。

实际上,把食用胶这一类的东西加到食物中不是现代食品技术的创造。烹饪中的基本技术“码芡”,就是通过淀粉在加热时形成薄薄的一层胶状物来防止肉中水分的流失,从而保持肉的鲜嫩。而“勾芡”,则是利用淀粉形成的糊状把调料沾在不容易入味的食材上面。而牛肉羹、玉米羹这样的食物,更是依靠淀粉来增稠获得口感。不增稠的话,就成为清汤了。还有许多传统小吃,就是用食用胶制作的。比如凉粉、冰粉、石花菜、皮冻等等,都是某一种水胶体成胶的产物。

在现代食品技术中,水胶体的研究和应用是极为重要的一个方面。还有一本专门的学术杂志叫做《食品胶体》(Food Hydrocolloids ),刊登关于各种食用胶的研究领域的学术论文。可以说,正是各种食用胶的应用,我们才有了各种各样以前没有的新型食品。

除了淀粉,其他的食用胶是作为食品添加剂管理的。这些水胶体除了可以用于食品,还可以用于其他工业产品。作为工业原料,其生产过程的控制和要求就不象食品原料那么严。所以,工业级的水胶体会比食品级的要便宜。这就造成了不法商贩使用工业级原料代替食品原料的可能。而工业级原料,就可能存在有害杂质。就象任何的食品添加剂一样,合法生产规范使用的食用胶没有问题,但是食品安全的保障需要进行严格监管。公众和媒体,应该关注的是这些添加剂的使用是否合法,而不是仅仅因为陌生就产生恐慌。

相关文章
<p>本文作者:云无心</p><p><a href="http://songshuhui.net/wp-content/uploads/2011/04/2009_01_28-Gelatin.jpg"><img class="alignleft size-full wp-image-52439" src="http://songshuhui.net/wp-content/uploads/2011/04/2009_01_28-Gelatin.jpg" alt="" width="245" height="274" /></a><br /> 关于兰州拉面用“食用胶”使面条筋道的报道,再一次拨动了公众对于“食品添加剂”敏感的神经。“吃一碗面等于吃掉一只塑料袋”的恐吓,成功地煽起了公众的恐慌——这再次凸显,我们的记者,急需加强基本的科学素养。</p> <p>报道中所谓的“食用胶”,是一大类食品原料。在食品技术上,称为“hydrocolloid”,一般翻译成“水胶体”。因为对它们不熟悉,所以公众往往想当然地认为是“化学工业产物”而本能地排斥。常用的水胶体,其实都是“天然产物”。比如琼脂和卡拉胶,是海藻的提取物。明胶,是从动物的皮或者骨头水解熬制而来。被许多人当作“神奇保健品”的阿胶,只不过是在选材和工艺上有所不同,跟明胶并没有本质差异。食用胶中比较“高级”的果胶,主要来源是桔子皮和苹果榨汁后的残渣。还有一些食用胶是来自于植物的种子,比如阿拉伯胶、瓜尔豆胶、槐豆胶,都是从相应植物的种子中提取而来的。还有一些水胶体由微生物发酵得到,比如黄原胶。微生物发酵可以用于产生各种各样的东西,能被人类挑选出来制造食物成分的,都是经过了精挑细选、重重考验的。有许多我们熟悉的食物来自于微生物发酵,比如酱油、酒、醋、味精等等。多数的水胶体是直接的提取物,只有很少数经过一定的加工,比如羧甲基纤维素(CMC)。它是从植物中提取的,又通过化学反应在分子中的某些位置加上了“羧甲基”。虽然它也可以称为“化学产品”,不过其安全性已经经过了广泛检验,并没有发现对健康有什么危害。</p> <p>常见的食用胶多数是碳水化合物,从分子结构上来看,它们跟淀粉很类似。都是由小分子的糖(称为“单糖”)互相连接而成的高分子聚合物,叫做“多糖”或者 “多聚糖”。也有一些食用胶是蛋白质,常见的就是明胶。淀粉是最常见的多糖,是由葡萄糖连接而成的。而组成其他多糖的除了葡萄糖,还有果糖、半乳糖等等。不同的单糖和不同的连接方式,造就了各种各样性格不同的多糖。有一些只需要很少一点,就可以大大增加水的粘度,比如黄原胶。还有的食用胶在常温下不溶于水,在高温下溶解之后,降低地温就变成了固体,也就是通常所说的“成胶”了。明胶就是典型的例子。在不同的酸碱条件下,它们还可能和食物中的其他成分比如蛋白质、淀粉等发生连接,从而改善其他食物成分的特性,从而产生更加丰富多样的食品。比如许多蛋白质在酸性条件下不溶解,而很多人又喜欢酸性饮料的口味。加入适当的果胶,让果胶和蛋白质连接,就可能使蛋白质在酸性条件下溶解,从而获得清澈透明的酸性饮料。在面条中加入适当的食用胶,也可能使得面条更加筋道,也是一种改善。一般而言,食用胶在食物中的使用量不大,起到的作用主要有增稠、增加稳定性、成胶等。还有一些食用胶,本身也被当作膳食纤维。比如果胶、瓜尔胶、琼脂等。膳食纤维能够提供饱足感但是不产生热量,对于减肥有帮助。不溶性的膳食纤维有助通便,而可溶性的膳食纤维(比如果胶)到达大肠之后能被那里的细菌分解,产生一些有助健康的小分子物质。</p> <p><a href="http://songshuhui.net/wp-content/uploads/2011/04/Edible_gelatin.jpg"><img class="alignright size-full wp-image-52440" src="http://songshuhui.net/wp-content/uploads/2011/04/Edible_gelatin.jpg" alt="" width="245" height="245" /></a></p> <p>实际上,把食用胶这一类的东西加到食物中不是现代食品技术的创造。烹饪中的基本技术“码芡”,就是通过淀粉在加热时形成薄薄的一层胶状物来防止肉中水分的流失,从而保持肉的鲜嫩。而“勾芡”,则是利用淀粉形成的糊状把调料沾在不容易入味的食材上面。而牛肉羹、玉米羹这样的食物,更是依靠淀粉来增稠获得口感。不增稠的话,就成为清汤了。还有许多传统小吃,就是用食用胶制作的。比如凉粉、冰粉、石花菜、皮冻等等,都是某一种水胶体成胶的产物。</p> <p>在现代食品技术中,水胶体的研究和应用是极为重要的一个方面。还有一本专门的学术杂志叫做《食品胶体》(Food Hydrocolloids ),刊登关于各种食用胶的研究领域的学术论文。可以说,正是各种食用胶的应用,我们才有了各种各样以前没有的新型食品。</p> <p>除了淀粉,其他的食用胶是作为食品添加剂管理的。这些水胶体除了可以用于食品,还可以用于其他工业产品。作为工业原料,其生产过程的控制和要求就不象食品原料那么严。所以,工业级的水胶体会比食品级的要便宜。这就造成了不法商贩使用工业级原料代替食品原料的可能。而工业级原料,就可能存在有害杂质。就象任何的食品添加剂一样,合法生产规范使用的食用胶没有问题,但是食品安全的保障需要进行严格监管。公众和媒体,应该关注的是这些添加剂的使用是否合法,而不是仅仅因为陌生就产生恐慌。</p> <strong>相关文章</strong><div class="my-related-posts-box" style="width:100%;height:100%;clear:both;text-align:center;overflow:hidden;"> <a href="http://songshuhui.net/archives/54552" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">掉颜色的水果和粮食是怎么回事?</span></span> </a> <a href="http://songshuhui.net/archives/53060" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/04/yogurt_副本22.png" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">酸奶为什么这么粘——随便说说“老酸奶”</span></span> </a> <a href="http://songshuhui.net/archives/57941" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/08/葡萄酒-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">葡萄酒中为何含有二氧化硫?</span></span> </a> <a href="http://songshuhui.net/archives/56138" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/06/zouxy_yz124341_b_副本-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">蓬灰,拉面的科技(下)</span></span> </a> <a href="http://songshuhui.net/archives/56131" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/06/2011022510194325_副本-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">蓬灰,拉面的科技(上)</span></span> </a> </div> <div class="my-related-posts-clearboth" style="clear:both;height:1px;overflow:hidden;"></div>

The limits of knowledge: Things we'll never understand

原文:The limits of knowledge: Things we'll never understand

From the machinery of life to the fate of the cosmos, what can't science explain?

YOU might not expect the UK's Astronomer Royal to make too many pronouncements about what chimpanzees think, but that is one of Martin Rees's favourite topics. He reckons we can learn a lesson from what they understand about the world - or, rather, what they don't. "A chimpanzee can't understand quantum mechanics," Rees points out.

That might sound like a statement of the obvious. After all, as Richard Feynman famously said, nobody understands quantum mechanics. The point, though, is that chimps don't even know what they don't understand. "It's not that a chimpanzee is struggling to understand quantum mechanics," Rees says. "It's not even aware of it." The question that intrigues Rees is whether there are facets of the universe to which we humans are similarly oblivious. "There is no reason to believe that our brains are matched to understanding every level of reality," he says.

We live in an age in which science enjoys remarkable success. We have mapped out a grand scheme of how the physical universe works on scales from quarks to galactic clusters, and of the living world from the molecular machinery of cells to the biosphere. There are gaps, of course, but many of them are narrowing. The scientific endeavour has proved remarkably fruitful, especially when you consider that our brains evolved for survival on the African savannah, not to ponder life, the universe and everything. So, having come this far, is there any stopping us?

The answer has to be yes: there are limits to science. There are some things we can never know for sure because of the fundamental constraints of the physical world. Then there are the problems that we will probably never solve because of the way our brains work. And there may be equivalents to Rees's observation about chimps and quantum mechanics - concepts that will forever lie beyond our ken.

But the limits in knowledge and understanding that we do recognise are, if anything, cause for celebration. They represent some of the most fertile ground for us to explore; ever creative, scientists are learning how to turn obstacles into opportunities. We may never be able to know everything, but discovering what we cannot know usually leads to us knowing more.

Perhaps the most fundamental limitation on knowledge is the cosmic horizon beyond which we will never see. This derives from one of nature's unbreakable rules: nothing can travel faster than light. In 1929, Edwin Hubble discovered that the universe is expanding. Everything is moving away from us, and the expansion is fastest at the most distant reaches of the universe. Any object that is more than 46 billion light years (4×1023kilometres) away is receding at more than the speed of light. (Though nothing can travel through space faster than light, the fabric of the universe itself can expand faster.)

From the moment that an object slips over the horizon, no light it emits will ever arrive at Earth - and the same goes for any other information about it. All we have is the data that has had time to reach us during the lifetime of the universe. The rest - possibly an infinite amount - is lost to us forever.

What is beyond the cosmic horizon? We don't know, but it is generally assumed that the unobservable part of the universe is much the same as the part we can see. However, that assumption has recently been challenged by the discovery of more than 1000 distant galaxy clusters rushing towards the same point in the sky (New Scientist, 23 January 2009, p 50). This "dark flow" hints that there might be megastructures beyond the horizon that are unlike anything we have observed.

Today's unknowns

The limitation imposed by the speed of light means we may never know whether they exist or not. But that dark cloud comes with a silver lining. The discovery of a finite speed of light paved the way for Einstein to twig that everything else in the universe is bound by the speed limit - an idea that revolutionised physics in the form of special relativity.

Another fundamental constraint on our knowledge is the feature of quantum mechanics we know as the Heisenberg uncertainty principle. This has its roots in the discovery that certain things in nature, such as energy, are packaged up in fundamental, indivisible units called quanta. In the 1920s, Werner Heisenberg realised that the measurable characteristics of a quantum object such as an electron do not have a defined value, but many possible values each with a probability attached to it. To pin the value down means taking lots of separate measurements, but doing so blurs our knowledge of another characteristic. The best-known consequence is that we can never simultaneously know a particle's exact position and momentum.

Although Heisenberg unearthed this principle by digging into the mathematics of quantum theory, it has a physical explanation. Bounce a photon off a particle in order to establish its position, and the impact will change the particle's momentum. Thus accurate measurement of both position and momentum simultaneously is impossible.

This places a theoretical limit on our knowledge, but the discovery of the uncertainty principle led to numerous breakthroughs elsewhere. "At first glance, it might seem that uncertainty is 'bad', in the sense that it limits how much we can hope to learn," says Stephanie Wehner of the Centre for Quantum Technologies at the National University of Singapore. "However, the principle isn't really a road block, it's more like a stepping stone. It provides a tool for exploring the quantum world."

Importantly for you and me, we wouldn't be here without it: the uncertainty principle provides our best explanation for how the entire universe came into being. That's because uncertainty shatters the notion that anything ever has exactly zero energy. So the universe could have come into existence spontaneously when its energy state momentarily flickered away from zero. Heisenberg himself pointed out that uncertainty in time measurements destroys common-sense notions of cause and effect - which perhaps makes the idea of something appearing from nothing a little easier to swallow.

Similar reasoning led Stephen Hawking to propose that black holes must emit a form of radiation - and we have good evidence that they do. Hawking radiation results from apparently empty space gaining some energy due to the uncertainty principle. This is converted into a pair of short-lived particles - one of normal matter and one of antimatter - that would usually annihilate each other moments after their creation. Near a black hole's event horizon, however, one can float away while the other is swallowed by the black hole. The gradual loss of the energy carried away by these particles will eventually lead to the complete evaporation of the black hole. Analogues of black holes created by shining laser light into a piece of glass have recreated this phenomenon (New Scientist, 2 October 2010, p 10)- adding plausibility to the argument that the universe created itself from nothing.

A fundamental limit of mathematics has offered a similarly rich vein of research material. In 1931, Kurt Gödel formulated his incompleteness theorem, which showed that certain mathematical systems cannot prove themselves to be true. Arithmetic, for example, is built on axioms - assumptions, essentially - that can't themselves be proven using arithmetic. That makes the entire edifice of arithmetic in some ways a mathematical equivalent of the sentence "this sentence is false". Other branches of mathematics face a similar problem.

Gödel's insight was a huge blow to the dream of building an unassailable mathematical foundation upon which our description of reality could be built - and it may also place a fundamental limit on how much trust physicists can place in any theory they create. However, here too a limitation has been turned into a source of ideas.

The British mathematician Alan Turing, for example, used Gödel's work to uncover a fundamental characteristic of computing machines: that it is impossible to devise a method that can be applied to any program to predict whether or not it will finish its task and halt. Sometimes you just have to run the program and wait. This "halting problem" may seem arcane but it has come to play a fundamental role in mathematics and computer science. It has turned out to be equivalent to many other problems in pure mathematics, such as deciding whether a "Diophantine equation", a type of algebraic expression involving only whole numbers, has a solution or not. "It tells you when not to attempt the impossible," says Gregory Chaitin, a mathematician at IBM's Watson Research Center in Yorktown Heights, New York.

Just as the impossibility of building a perpetual motion machine led to the discovery of the laws of thermodynamics, the limits of mathematics and computing can teach us some basic rules about how the mathematical world works. "I used to be a pessimist about incompleteness, but not any more," Chaitin says. "You can say, 'Oh my god there's a wall', but you can also say, 'Look: there's a door in the wall'."

Chaitin is now applying incompleteness to evolution - something he calls "metabiology". The idea stems from his considerations of Turing's work. The halting problem led Chaitin to formulate a number, known as omega, that defines the probability of whether a randomly chosen program will halt or not in terms of a string of 0s and 1s. Omega is infinitely long and irreducibly complex, and Chaitin has described it as the DNA of mathematics. Now he is working out how to use omega to examine real DNA.

If you think of DNA as a program for building and operating an organism, Chaitin says, you might be able to discover the mathematics by which the information in DNA operates. Doing this, he says, may show that evolution is the analogue of omega: infinitely complex and thus endlessly creative. "A way of looking at Gödel and Turing's work is that they were opening the door from pure mathematics to biology," Chaitin says.

When it comes to biology, there is only one sure limit, according to evolutionary biologist Jerry Coyne of the University of Chicago. Knowing how life began will be forever beyond our reach, he says - it is biology's cosmic horizon. That is because the molecules involved didn't get fossilised. Even if we can create a "second genesis" in the laboratory, that won't tell us exactly how it happened on Earth 3.8 billion years ago, Coyne says. "There are so many different scenarios for how life got going and they all involve molecules that don't get fossilised. It's a clear limit."

Another area of biology that some say lies beyond the limits of science is consciousness. Decades have passed without any real progress, says Russell Stannard, emeritus professor of physics at the Open University in the UK, and author of The End of Discovery. That may mean it is beyond us, he concludes. "Consciousness is a very good candidate for us having exhausted all that can be said about it."

Philosopher Daniel Dennett of Tufts University in Medford, Massachusetts, doesn't buy this argument. "There are limits to science but this isn't one of them," he says. "I know of no reason to expect that a brain couldn't understand its own methods of functioning." Dennett also reckons that there is plenty of progress. "I can't keep up with it," he says. It's a tough problem to be sure, but the sceptics are seeing the problem from the wrong perspective. Just because the brain is complex, with 100 million cells and a quadrillion synaptic connections, that doesn't mean we can't figure out what is going on within it.

However complex the human brain, Dennett points out, we are quite capable of augmenting its capabilities in order to understand it. In the past we used conversations, books and letters; now we use computers to store, access and process vast amounts of data. We have become extremely successful at sharing that data too, in a way that connects many minds together to solve the toughest of questions. That is how we reached the point where we can understand and even predict the movement of stars and electrons. There is no reason to think consciousness cannot be conquered in the same way, Dennett says.

Science and technology don't just allow us to augment our brains and senses to see further. They can also open doors to worlds we can never directly experience. The early history of our cosmos is lost to us forever because it was only after 100,000 years that light became detached from matter and was free to fill the universe, carrying information with it. That hasn't stopped us from piecing together a detailed account of what happened before that time.

Don't underestimate science

A combination of creative thinking and rigorous checks against what information we do have available has proved an astonishingly powerful tool. While we will never know for sure that the big bang theory is correct, we have lots of reasons to think it is. For example, the amounts of the elements hydrogen, helium and lithium present in the universe exactly match the predictions of our theories describing the beginning of everything.

It is also possible to use well-tested theories to see beyond what we can experience directly. For example, we have never carried out an experiment in a black hole and probably never will, but we can still be confident what happens inside one. "Einstein's theory of gravity has been tested in a number of ways, and therefore we take seriously what it has to say about the inside of black holes," Rees says.

Perhaps the biggest workaround will have to be in our search for a "theory of everything". The most promising candidate is string theory, which conjures what we think of as nature's fundamental forces and particles from the vibrations of tiny bundles of energy. Unfortunately, string theory only works if there are extra, unreachable dimensions of space. These dimensions are, string theorists suggest, "compactified" - rolled up too small for us to be able to interact with them.

Though we cannot access these dimensions, we already have circumstantial evidence that they exist. In 1999, for example, Lisa Randall and Raman Sundrum at Harvard University came up with an explanation for why the gravitational force is so much weaker than the other fundamental forces of nature. Their calculations looked at a five-dimensional universe and the way forces would manifest within it. They found that while electromagnetism and the strong and weak nuclear forces exert their full strength in all dimensions, gravity is strongly bound to the hidden fifth dimension and only a small fraction of it "leaks" into the four we inhabit. Is gravity's feebleness a result of hidden extra dimensions?

Proof of string theory faces other, even bigger obstacles. Even with the extra dimensions in place, there remains the problem of getting to the energies at which string theory could be tested. Probing things on such small scales requires working at extremely high energies - to smash them into ever-smaller pieces takes ever more energy. That is why particle accelerators need to get more powerful to delve deeper into the nature of matter. "To test string theory you'd need a collider the size of a galaxy," Stannard says. The chances of building such a machine are slim.

Yet there is still hope. Many of the equations governing high-energy physics turn out to be the same as those that govern the behaviour of electrons and other particles whizzing about within solids. That has led to suggestions that tabletop experiments on humble crystals might yield some of the answers we seek.

There are still doubters, of course. Some have suggested that our final theory would be so complex as to be beyond human comprehension, or even beyond human capabilities for discovering it. Mathematician Roger Penrose at the Univerity of Oxford thinks that unlikely, however. "I don't see why it should be," he says.

Marcelo Gleiser, a philosopher and physicist at Dartmouth College in New Hampshire, takes the opposite view. He has argued that the notion of a theory of everything rests on an unproven assumption that the universe is inherently neat and symmetrical. The very fact that the universe contains energy and matter is evidence against such symmetry, he says. Nothingness is neater than something, so the fact that the universe is full of stuff could mean that it is surprisingly messy at heart (New Scientist, 8 May 2010, p 28).

In the end, though, the consensus is that it is well worth pressing on. Thanks to the incompleteness theorem, we will never be sure any theory of everything is mathematically true, but that shouldn't bother us unduly. It didn't worry Gödel, who considered intuition more important than formal proof. Contemporary mathematicians are following suit, Chaitin says, and are throwing new, unprovable axioms into their subject all the time.

A little over 100 years ago, nobody had the slightest idea that the quantum world even existed. Now it lies at the heart of our understanding of the universe. Today's unknowns sometimes become tomorrow's great theories. A hundred years from now, who knows what we will know?

Rees remains circumspect, however. We can dream of a final theory, but we need to keep those chimps in mind, he says, even if the ultimate limits of science are not yet on our radar. "The limits won't necessarily be something we're struggling to solve now," he says. "It's not the unified theory. It's going to be a problem we are not even aware of."

Michael Brooks is a consultant for New Scientist and author of 13 Things that Don't Make Sense (Profile, 2008) and The Big Questions: Physics (Quercus, 2010)

相关文章
<p>本文作者:小红猪小分队</p><p>原文:<a href="http://www.newscientist.com/article/mg21028111.200-the-limits-of-knowledge-things-well-never-understand.html?DCMP=OTC-rss&nsref=magcontents" target="_blank">The limits of knowledge: Things we'll never understand</a></p> <p><em>From the machinery of life to the fate of the cosmos, what can't science explain?</em></p> <p>YOU might not expect the UK's Astronomer Royal to make too many pronouncements about what chimpanzees think, but that is one of Martin Rees's favourite topics. He reckons we can learn a lesson from what they understand about the world - or, rather, what they don't. "A chimpanzee can't understand quantum mechanics," Rees points out.</p> <p>That might sound like a statement of the obvious. After all, as Richard Feynman famously said, <a href="http://www.newscientist.com/article/mg20627596.800-quantum-wonders-nobody-understands.html" target="_blank">nobody understands quantum mechanics</a>. The point, though, is that chimps don't even know what they don't understand. "It's not that a chimpanzee is struggling to understand quantum mechanics," Rees says. "It's not even aware of it." The question that intrigues Rees is whether there are facets of the universe to which we humans are similarly oblivious. "There is no reason to believe that our brains are matched to understanding every level of reality," he says.</p> <p>We live in an age in which science enjoys remarkable success. We have mapped out a grand scheme of how the physical universe works on scales from quarks to galactic clusters, and of the living world from the molecular machinery of cells to the biosphere. There are gaps, of course, but many of them are narrowing. The scientific endeavour has proved remarkably fruitful, especially when you consider that our brains evolved for survival on the African savannah, not to ponder life, the universe and everything. So, having come this far, is there any stopping us?</p> <p>The answer has to be yes: there are limits to science. There are some things we can never know for sure because of the fundamental constraints of the physical world. Then there are the problems that we will probably never solve because of the way our brains work. And there may be equivalents to Rees's observation about chimps and quantum mechanics - concepts that will forever lie beyond our ken.</p> <p>But the limits in knowledge and understanding that we do recognise are, if anything, cause for celebration. They represent some of the most fertile ground for us to explore; ever creative, scientists are learning how to turn obstacles into opportunities. We may never be able to know everything, but discovering what we cannot know usually leads to us knowing more.</p> <p>Perhaps the most fundamental limitation on knowledge is the cosmic horizon beyond which we will never see. This derives from one of nature's unbreakable rules: nothing can travel faster than light. In 1929, Edwin Hubble discovered that the universe is expanding. Everything is moving away from us, and the expansion is fastest at the most distant reaches of the universe. Any object that is more than 46 billion light years (4×10<sup>23</sup>kilometres) away is receding at more than the speed of light. (Though nothing can travel through space faster than light, the fabric of the universe itself can expand faster.)</p> <p>From the moment that an object slips over the horizon, no light it emits will ever arrive at Earth - and the same goes for any other information about it. All we have is the data that has had time to reach us during the lifetime of the universe. The rest - possibly an infinite amount - is lost to us forever.</p> <p>What is beyond the cosmic horizon? We don't know, but it is generally assumed that the unobservable part of the universe is much the same as the part we can see. However, that assumption has recently been challenged by the discovery of more than 1000 distant galaxy clusters rushing towards the same point in the sky <a href="http://www.newscientist.com/article/mg20126921.900-dark-flow-proof-of-another-universe.html" target="_blank">(<em>New Scientist</em>, 23 January 2009, p 50)</a>. This "dark flow" hints that there might be megastructures beyond the horizon that are unlike anything we have observed.</p> <p><strong>Today's unknowns</strong></p> <p>The limitation imposed by the speed of light means we may never know whether they exist or not. But that dark cloud comes with a silver lining. The discovery of a finite speed of light paved the way for Einstein to twig that everything else in the universe is bound by the speed limit - an idea that revolutionised physics in the form of special relativity.</p> <p>Another fundamental constraint on our knowledge is the feature of quantum mechanics we know as the Heisenberg uncertainty principle. This has its roots in the discovery that certain things in nature, such as energy, are packaged up in fundamental, indivisible units called quanta. In the 1920s, Werner Heisenberg realised that the measurable characteristics of a quantum object such as an electron do not have a defined value, but many possible values each with a probability attached to it. To pin the value down means taking lots of separate measurements, but doing so blurs our knowledge of another characteristic. The best-known consequence is that we can never simultaneously know a particle's exact position and momentum.</p> <p>Although Heisenberg unearthed this principle by digging into the mathematics of quantum theory, it has a physical explanation. Bounce a photon off a particle in order to establish its position, and the impact will change the particle's momentum. Thus accurate measurement of both position and momentum simultaneously is impossible.</p> <p>This places a theoretical limit on our knowledge, but the discovery of the uncertainty principle led to numerous breakthroughs elsewhere. "At first glance, it might seem that uncertainty is 'bad', in the sense that it limits how much we can hope to learn," says Stephanie Wehner of the Centre for Quantum Technologies at the National University of Singapore. "However, the principle isn't really a road block, it's more like a stepping stone. It provides a tool for exploring the quantum world."</p> <p>Importantly for you and me, we wouldn't be here without it: the uncertainty principle provides our best explanation for how the entire universe came into being. That's because uncertainty shatters the notion that anything ever has exactly zero energy. So the universe could have come into existence spontaneously when its energy state momentarily flickered away from zero. Heisenberg himself pointed out that uncertainty in time measurements destroys common-sense notions of cause and effect - which perhaps makes the idea of something appearing from nothing a little easier to swallow.</p> <p>Similar reasoning led Stephen Hawking to propose that black holes must emit a form of radiation - and we have good evidence that they do. Hawking radiation results from apparently empty space gaining some energy due to the uncertainty principle. This is converted into a pair of short-lived particles - one of normal matter and one of antimatter - that would usually annihilate each other moments after their creation. Near a black hole's event horizon, however, one can float away while the other is swallowed by the black hole. The gradual loss of the energy carried away by these particles will eventually lead to the complete evaporation of the black hole. Analogues of black holes created by shining laser light into a piece of glass have recreated this phenomenon <a href="http://www.newscientist.com/article/mg20827804.300-hawking-radiation-glimpsed-in-artificial-black-hole.html" target="_blank">(<em>New Scientist</em>, 2 October 2010, p 10)</a>- adding plausibility to the argument that the universe created itself from nothing.</p> <p>A fundamental limit of mathematics has offered a similarly rich vein of research material. In 1931, Kurt Gödel formulated his incompleteness theorem, which showed that certain mathematical systems cannot prove themselves to be true. Arithmetic, for example, is built on axioms - assumptions, essentially - that can't themselves be proven using arithmetic. That makes the entire edifice of arithmetic in some ways a mathematical equivalent of the sentence "this sentence is false". Other branches of mathematics face a similar problem.</p> <p>Gödel's insight was a huge blow to the dream of building an unassailable mathematical foundation upon which our description of reality could be built - and it may also place a fundamental limit on how much trust physicists can place in any theory they create. However, here too a limitation has been turned into a source of ideas.</p> <p>The British mathematician Alan Turing, for example, used Gödel's work to uncover a fundamental characteristic of computing machines: that it is impossible to devise a method that can be applied to any program to predict whether or not it will finish its task and halt. Sometimes you just have to run the program and wait. This "halting problem" may seem arcane but it has come to play a fundamental role in mathematics and computer science. It has turned out to be equivalent to many other problems in pure mathematics, such as deciding whether a "Diophantine equation", a type of algebraic expression involving only whole numbers, has a solution or not. "It tells you when not to attempt the impossible," says Gregory Chaitin, a mathematician at IBM's Watson Research Center in Yorktown Heights, New York.</p> <p>Just as the impossibility of building a perpetual motion machine led to the discovery of the laws of thermodynamics, the limits of mathematics and computing can teach us some basic rules about how the mathematical world works. "I used to be a pessimist about incompleteness, but not any more," Chaitin says. "You can say, 'Oh my god there's a wall', but you can also say, 'Look: there's a door in the wall'."</p> <p>Chaitin is now applying incompleteness to evolution - something he calls "metabiology". The idea stems from his considerations of Turing's work. The halting problem led Chaitin to formulate a number, known as omega, that defines the probability of whether a randomly chosen program will halt or not in terms of a string of 0s and 1s. Omega is infinitely long and irreducibly complex, and Chaitin has described it as the DNA of mathematics. Now he is working out how to use omega to examine real DNA.</p> <p>If you think of DNA as a program for building and operating an organism, Chaitin says, you might be able to discover the mathematics by which the information in DNA operates. Doing this, he says, may show that evolution is the analogue of omega: infinitely complex and thus endlessly creative. "A way of looking at Gödel and Turing's work is that they were opening the door from pure mathematics to biology," Chaitin says.</p> <p>When it comes to biology, there is only one sure limit, according to evolutionary biologist Jerry Coyne of the University of Chicago. Knowing how life began will be forever beyond our reach, he says - it is biology's cosmic horizon. That is because the molecules involved didn't get fossilised. Even if we can create a "second genesis" in the laboratory, that won't tell us exactly how it happened on Earth 3.8 billion years ago, Coyne says. "There are so many different scenarios for how life got going and they all involve molecules that don't get fossilised. It's a clear limit."</p> <p>Another area of biology that some say lies beyond the limits of science is consciousness. Decades have passed without any real progress, says Russell Stannard, emeritus professor of physics at the Open University in the UK, and author of <em>The End of Discovery</em>. That may mean it is beyond us, he concludes. "Consciousness is a very good candidate for us having exhausted all that can be said about it."</p> <p>Philosopher Daniel Dennett of Tufts University in Medford, Massachusetts, doesn't buy this argument. "There are limits to science but this isn't one of them," he says. "I know of no reason to expect that a brain couldn't understand its own methods of functioning." Dennett also reckons that there is plenty of progress. "I can't keep up with it," he says. It's a tough problem to be sure, but the sceptics are seeing the problem from the wrong perspective. Just because the brain is complex, with 100 million cells and a quadrillion synaptic connections, that doesn't mean we can't figure out what is going on within it.</p> <p>However complex the human brain, Dennett points out, we are quite capable of augmenting its capabilities in order to understand it. In the past we used conversations, books and letters; now we use computers to store, access and process vast amounts of data. We have become extremely successful at sharing that data too, in a way that connects many minds together to solve the toughest of questions. That is how we reached the point where we can understand and even predict the movement of stars and electrons. There is no reason to think consciousness cannot be conquered in the same way, Dennett says.</p> <p>Science and technology don't just allow us to augment our brains and senses to see further. They can also open doors to worlds we can never directly experience. The early history of our cosmos is lost to us forever because it was only after 100,000 years that light became detached from matter and was free to fill the universe, carrying information with it. That hasn't stopped us from piecing together a detailed account of what happened before that time.</p> <p><strong>Don't underestimate science</strong></p> <p>A combination of creative thinking and rigorous checks against what information we do have available has proved an astonishingly powerful tool. While we will never know for sure that the big bang theory is correct, we have lots of reasons to think it is. For example, the amounts of the elements hydrogen, helium and lithium present in the universe exactly match the predictions of our theories describing the beginning of everything.</p> <p>It is also possible to use well-tested theories to see beyond what we can experience directly. For example, we have never carried out an experiment in a black hole and probably never will, but we can still be confident what happens inside one. "Einstein's theory of gravity has been tested in a number of ways, and therefore we take seriously what it has to say about the inside of black holes," Rees says.</p> <p>Perhaps the biggest workaround will have to be in our search for a "theory of everything". The most promising candidate is string theory, which conjures what we think of as nature's fundamental forces and particles from the vibrations of tiny bundles of energy. Unfortunately, string theory only works if there are extra, unreachable dimensions of space. These dimensions are, string theorists suggest, "compactified" - rolled up too small for us to be able to interact with them.</p> <p>Though we cannot access these dimensions, we already have circumstantial evidence that they exist. In 1999, for example, Lisa Randall and Raman Sundrum at Harvard University came up with an explanation for why the gravitational force is so much weaker than the other fundamental forces of nature. Their calculations looked at a five-dimensional universe and the way forces would manifest within it. They found that while electromagnetism and the strong and weak nuclear forces exert their full strength in all dimensions, gravity is strongly bound to the hidden fifth dimension and only a small fraction of it "leaks" into the four we inhabit. Is gravity's feebleness a result of hidden extra dimensions?</p> <p>Proof of string theory faces other, even bigger obstacles. Even with the extra dimensions in place, there remains the problem of getting to the energies at which string theory could be tested. Probing things on such small scales requires working at extremely high energies - to smash them into ever-smaller pieces takes ever more energy. That is why particle accelerators need to get more powerful to delve deeper into the nature of matter. "To test string theory you'd need a collider the size of a galaxy," Stannard says. The chances of building such a machine are slim.</p> <p>Yet there is still hope. Many of the equations governing high-energy physics turn out to be the same as those that govern the behaviour of electrons and other particles whizzing about within solids. That has led to suggestions that tabletop experiments on humble crystals might yield some of the answers we seek.</p> <p>There are still doubters, of course. Some have suggested that our final theory would be so complex as to be beyond human comprehension, or even beyond human capabilities for discovering it. Mathematician Roger Penrose at the Univerity of Oxford thinks that unlikely, however. "I don't see why it should be," he says.</p> <p>Marcelo Gleiser, a philosopher and physicist at Dartmouth College in New Hampshire, takes the opposite view. He has argued that the notion of a theory of everything rests on an unproven assumption that the universe is inherently neat and symmetrical. The very fact that the universe contains energy and matter is evidence against such symmetry, he says. Nothingness is neater than something, so the fact that the universe is full of stuff could mean that it is surprisingly messy at heart <a href="http://www.newscientist.com/article/mg20627591.200-the-imperfect-universe-goodbye-theory-of-everything.html" target="_blank">(<em>New Scientist</em>, 8 May 2010, p 28)</a>.</p> <p>In the end, though, the consensus is that it is well worth pressing on. Thanks to the incompleteness theorem, we will never be sure any theory of everything is mathematically true, but that shouldn't bother us unduly. It didn't worry Gödel, who considered intuition more important than formal proof. Contemporary mathematicians are following suit, Chaitin says, and are throwing new, unprovable axioms into their subject all the time.</p> <p>A little over 100 years ago, nobody had the slightest idea that the quantum world even existed. Now it lies at the heart of our understanding of the universe. Today's unknowns sometimes become tomorrow's great theories. A hundred years from now, who knows what we will know?</p> <p>Rees remains circumspect, however. We can dream of a final theory, but we need to keep those chimps in mind, he says, even if the ultimate limits of science are not yet on our radar. "The limits won't necessarily be something we're struggling to solve now," he says. "It's not the unified theory. It's going to be a problem we are not even aware of."</p> <p><strong><em>Michael Brooks</em></strong><em> is a consultant for New Scientist and author of 13 Things that Don't Make Sense (Profile, 2008) and The Big Questions: Physics (Quercus, 2010)</em></p> <strong>相关文章</strong><div class="my-related-posts-box" style="width:100%;height:100%;clear:both;text-align:center;overflow:hidden;"> <a href="http://songshuhui.net/archives/54859" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2011/05/104834122-144x144.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">The grand delusion What you see is not what you get</span></span> </a> <a href="http://songshuhui.net/archives/54196" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">Unnatural selection: How humans are driving evolution</span></span> </a> <a href="http://songshuhui.net/archives/53716" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">Gender-biased bacteria throw off an evolutionary balance</span></span> </a> <a href="http://songshuhui.net/archives/53172" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">How to be happy: What is happiness anyway?</span></span> </a> <a href="http://songshuhui.net/archives/53171" class="my-related-posts" style="width:112px;height:180px;float:left;text-align:center;border:1px solid #f5f5f5;border-bottom-style:none;border-top-style:none;padding:0px;margin:1px;text-decoration:none;" onmouseover="this.style.border='1px solid #CCC';this.style.background='#E2E2E2';this.style.borderBottom='none';this.style.borderTop='none'" onmouseout="this.style.background='';this.style.border='1px solid #f5f5f5';this.style.borderBottom='none';this.style.borderTop='none'"> <span class="my-related-posts-panel" style="padding:3px 0;"><img class="my-related-posts-img" src="http://songshuhui.net/wp-content/uploads/2008/10/scilog3-4-thumb1.jpg" style="width:106px;height:106px;border:1px solid #f0f0f0;padding:1px;margin:1px;" /></span> <span class="my-related-posts-text"><span class="my-related-posts-title" style="font-size:11px;font-family:sans-serif;font-weight:700;line-height:140%;text-align:left;">Waiting for the motivation fairy</span></span> </a> </div> <div class="my-related-posts-clearboth" style="clear:both;height:1px;overflow:hidden;"></div>